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ABSTRACT 

Crystal Ball® calculates sensitivities by computing rank correlation coefficients between model inputs (assumptions) and 
outputs (forecasts) – an approach that is known to provide inaccurate results for correlated assumptions.  This paper describes 
the Partial Correlation Coefficient (PCC) concept for sensitivity analysis of probabilistic models with correlated inputs.  
PCCs quantify the strength of a linear relationship between input-output pairs after eliminating the linear influence of other 
input variables, and can be readily calculated from the input-input correlation matrix and the input-output correlation vector.  
The methodology is illustrated using an analytical model of environmental health risk arising from groundwater-borne ra-
dionuclide migration from a nuclear waste repository. 

1 INTRODUCTION 

Sensitivity analysis, in its simplest sense, involves quantification of the change in model output corresponding to a change in 
one or more of the model inputs.  In the context of probabilistic models, however, sensitivity analysis is generally taken to 
imply identification of input parameters that have the greatest influence on the spread (variance) of model results (Helton, 
1993).  This is also referred to as global sensitivity or uncertainty importance analysis to distinguish it from the classical sen-
sitivity measures obtained as partial derivatives of the output with respect to inputs of interest (Saltelli et al., 2000).   

The contribution to output uncertainty (variance) by an input is a function of both the uncertainty of the input variable 
and the sensitivity of the output to that particular input.  In general, input variables identified as important in global sensitiv-
ity analysis have both characteristics; they demonstrate significant variance and are characterized by large sensitivity coeffi-
cients.  Conversely, variables which do not show up as important per these metrics are either restricted to a small range in the 
probabilistic analysis, and/or are variables to which the model outcome does not have a high sensitivity.   

A commonly-used measure of input-output sensitivity or uncertainty importance is Spearman’s rank correlation coeffi-
cient, RCC, defined as (Helton et al., 1991): 
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where x is the input of interest, y is the output, the overbar symbol denotes the sample mean and k is an index for the samples 
(realizations).  The RCC provides a measure of the degree to which the input variable of interest and the output can change 
together.  It quantifies the strength of linear and monotonic association between the input-output pair – with the rank trans-
formation facilitating a linearization of any underlying non-linear trends (Helton, 1993).  Positive values of the RCC imply 
that an increase in the input corresponds to an increase in the output, with negative values implying the reverse situation.  The 
larger the absolute value of the RCC, the stronger the relationship between the input-output pair.  The RCC is also the pri-
mary measure used by Crystal Ball for ranking the most important variables in a probabilistic model.   

When a linear additive input-output model is built with uncorrelated inputs, the goodness-of-fit of the model can be ex-
pressed as (Draper and Smith, 1981): 
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where R2, the coefficient of determination, denotes the fractional variance in y explained by the model.  Thus, the term 
RCC2[y,xj] can be interpreted as the fractional variance in y explained by the j-th independent variable.  As can be easily as-
certained, both Eq. (1) and Eq. (2) lead to the same order of importance for the uncertain inputs.  It should be pointed out that 
Crystal Ball uses Eq. (2) to determine the fractional contribution to output variance by the uncertain inputs as an alternative 
measure of uncertainty importance.   

When some of the input variables are correlated, the goodness-of-fit of the input-output model can no longer be ex-
pressed via a simple linear sum as in Eq. (2), but must also include terms reflecting the covariance of the correlated inputs.  In 
such situations, it becomes difficult to assign a unique component of the output variance to each of the uncertain inputs.  
Crystal Ball recognizes this limitation, and recommends in the User’s Manual that the importance ranking on the basis of 
RCCs, as depicted in the Sensitivity Chart, should be carefully used when inputs are correlated. 

2 PARTIAL CORRELATION CONCEPT 

The partial correlation coefficient, PCC, measures the correlation between the output and the selected input variable after the 
linear influence of the other variables have been eliminated (Draper and Smith, 1981).  The partial rank correlation coeffi-
cient, PRCC, is the corresponding measure when input-output relationships are built using the ranks of the variables to lin-
earize the relation.  With little loss of generality, we will use PRCCs in the following discussion – with the understanding that 
the input-output pair of interest has already been rank transformed. 

Let y denote the output variable and xj, j = 1,…., n, denote the uncertain inputs – some of which are correlated.  In order 
to determine the PRCC between y and the p-th uncertain input, xp, we first build a linear regression model between y and all 
the other uncertain inputs, viz: 
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where b denotes a regression coefficient and the ‘hat’ signifies a regression-fitted variable.  Next, a linear regression model is 
built between xp and all the other uncertain inputs, viz: 
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with c denoting a regression coefficient.  The RCC between the residuals arising out of the Eq. (3) and Eq. (4) will now be 
free from the effects of input-input correlations, and is defined as the PRCC (Draper and Smith, 1981): 
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We now consider a practical strategy for determining PRCCs that does not require building a sequence of regression models 
as suggested by Eq. (3)–(5).  Following Iman et al. (1985), we write the augmented correlation matrix between the output 
variable, y, and the independent variables xj, j = 1,…., n, as: 
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where the matrix A represents the input-input correlation matrix with elements rij = RCC[xi,xj], and the vector BT denotes the 
output-input correlation vector with elements ryj = RCC[y,xj].  As shown by Rao (1973), the PRCC between xj and y can be 
obtained from the elements of C-1, the inverse of C, as follows: 
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where the subscript y is now used as the designator for row and column n+1 in C-1.  It can also be shown that the PRCC and 
RCC are related as follows (RamaRao et al., 1998):   
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where j is an index for the uncertain variable of interest, and R2 denotes the coefficient of determination for the linear regres-
sion model with the j-th input variable included.  Note that the importance ranking via PRCC and RCC will be identical for 
the case of uncorrelated inputs. 

Helton (1993) describes several applications of the PRCC concept for analyzing the results of a probabilistic perform-
ance assessment model for the Waste Isolation Pilot Plant facility in Carlsbad, NM.  RamaRao et al. (1998) showed that the 
square of the PRCC can be interpreted as the gain in R2 of an input-output regression model – when the selected variable is 
brought into regression – as a fraction of the currently unexplained variance.  They also presented results of a probabilistic 
sensitivity analysis using PRCCs for the proposed high-level radioactive waste repository at Yucca Mountain, NV. 

3 ENVIRONMENTAL RISK ASSESSMENT MODEL 

In what follows, the advantage of PRCCs for performing sensitivity analysis in a probabilistic model with correlated inputs is 
demonstrated using an analytical model of time-dependent risk arising from water-borne nuclide migration from a repository 
(Robinson and Hodgkinson, 1986).  This simple “screening” model, which includes the most important aspects of radionu-
clide migration,  contains components representing the source term, geosphere transport and biosphere transport for a single 
member radionuclide chain such as Technetium (Tc-99). 

The source term is described by an initial containment time, To, followed by radionuclide release at a rate, k, proportional 
to the current inventory, with radioactive decay occurring all along.  The time-dependent source flux, S(t), after the contain-
ment period (t>To), is obtained as: 
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where Mo is the initial radionuclide inventory, and λ the radioactivity decay constant. 

In order to deal with general inputs from the source term it is useful to calculate a Green’s function for the geosphere, 
which gives the flux for a delta function input.  For the one-dimensional transport case with advection, dispersion, equilib-
rium sorption and decay, the Green’s function, G(t), is given by: 
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where d is the dispersivity, R the retardation factor, L the geosphere path length and v the groundwater velocity.  The output 
flux from the geosphere, F(t), is obtained via the convolution of S(t) with G(t), viz: 
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Finally, the biosphere path is assumed to be a stream which is the source of drinking water and hence the major exposure 

route for the critical group of human receptors.  The biosphere conversion term, B, is simply a multiplication factor: 
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where w is the annual amount of drinking water intake by an individual, W the stream flow rate, q the activity-to-dose factor, 
and ζ the risk factor for radiation induced cancer fatality. 

The above equations can be combined using the Laplace transformation technique to yield a time-dependent conse-
quence, C(t),  given by: 
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where  φ(z) = exp(z2)erfc(z), and the other symbols are as defined previously.  Note also that the consequence, C(t), is essen-
tially a risk term which expresses the probability of deaths per year - beyond the initial containment period (t>To). 

4 EXAMPLE PROBLEM 

The model described earlier is used to compute key uncertainty drivers of human health risk after 20,000 y of waste em-
placement due to the migration of a single radionuclide from a hypothetical repository.  The uncertain parameters in the 
model are: (1) fractional release rate, k, (2) groundwater velocity, v, and (3) biosphere conversion term, B.  Each of these pa-
rameters is assigned a log-normal distribution with parameters as given in Table 1.  Also tabulated therein are the fixed val-
ues assigned to all other parameters. Also, the correlation coefficient between log(k) and log(v) is specified as 0.50.   

 
 

Table 1.  Parameter distributions used in the example problem. 
 

Parameter Symbol Distribution Median Value Std. Dev. 
Initial inventory Mo (Bq) Fixed 5.0 x 1016 -- 

Release rate k (y-1) log-normal 3.16 x 10-5 0.333 
Containment time To (y) Fixed 316 -- 

Decay constant λ (y-1) Fixed 3.25 x 10-6 -- 
Retardation factor R (-) Fixed 10.0 -- 

Groundwater velocity v (m y-1) log-normal 0.1 0.167 
Dispersivity d (m) Fixed 20.0 -- 

Geosphere path length L (m) Fixed 316 -- 
Biosphere conversion term B (deaths Bq-1) log-normal 1.0 x 10-18 0.500 

Note:  Standard deviation is calculated for the log10-transformed parameters. 
 
 
A Monte Carlo simulation was carried out using the above model and parameters, with 1000 Latin Hypercube samples 

utilized for uncertain propagation.   The resulting cumulative distribution function (CDF) as calculated by Crystall Ball is 
shown in Fig. 1, exhibiting log-normal type characteristics with a P5-P95 range of ~10-3-5 and a median value of ~0.2.  Note 
that the outcome of interest is C(t) as defined in Eq. (13), and normalized to a nominal value 10-6 deaths/y. 
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Figure 1: CDF of output 
 
 
The sampled values of the inputs and the corresponding calculated value of the output for each of the 1000 realizations 

were extracted using Crystal Ball’s Scenario Analysis utility.  These values were then rank transformed, and used for calcu-
lating the input-input correlation matrix and the output-input correlation vector.  The resulting augmented (rank) correlation 
matrix, with a structure similar to Eq. (6), is given below in Table 2. 
 
 

Table 2.  Augmented correlation matrix for example problem. 
 

x1 X2 x3 y  
1 0.487004 -0.00525 0.60592 x1 

0.487004 1 0.017091 0.82965 x2 
-0.00525 0.017091 1 0.463146 x3 
0.60592 0.82965 0.463146 1 y 

 
 

Here, x1 denotes the fractional release rate, k, x2 denotes the groundwater velocity, v, x3 denotes the biosphere conver-
sion term, B, and y denotes the normalized risk, C(t).  On the basis of the RCCs between the input and the output, the most 
important (sensitive) variable can be identified as x2 (v), followed by x1 (k) and x3 (B).  These rankings are shown in Fig. 2 
using a format similar to that of the sensitivity chart produced by Crystal Ball.  It should be pointed out that the top two vari-
ables are correlated with a rank correlation coefficient of ~0.5. 
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Figure 2: Sensitivity chart based on RCC 

 
In order to determine the importance ranking using PRCCs, we first calculate the inverse of the augmented correlation 

matrix given in Table 2 using the Microsoft® Excel array function, MINVERSE, as follows: 
 
 

Table 3:  Inverse of augmented correlation matrix in Table 2. 
 

2.705427 2.884248 2.332777 -5.1126
2.884248 10.21448 5.824164 -12.9195
2.332777 5.824164 4.844413 -8.48916

-5.1126 -12.9195 -8.48916 18.74822
 

 
The calculation of PRCCs is then carried out using the relationship given in Eq. (7).  For example, the PRCC between x2 

and y is calculated as: 
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Similarly, PRCC[y,x1] and PRCC[y,x3] are calculated as .718 and .891, respectively.  This suggests that the most impor-

tant variable on the basis of PRCC is x2 (v), followed by x3 (B) and x1 (k).  The corresponding sensitivity chart is shown in 
Fig. 3. 
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Figure 3: Sensitivity ranking based on PRCC 

 
 
A comparison of the rankings based on RCCs and PRCCs shows that in both cases the most important input variable is 

groundwater velocity.  However, the second most important variable suggested by RCCs, the fractional release rate, has a 
relatively high correlation to groundwater velocity.  When this relationship is taken into consideration via the PRCCs, the 
true importance of the Biosphere conversion term is identified and it becomes the second most important variable. 

The actual values of the PRCCs are not as easy to interpret as the RCCs, which are related to the slope of the best-fit line 
through a rank-transformed input-output scatter plot.  While the relative magnitude of the PRCCs are important indicators of 
variable importance, the numeric values only have a specific meaning in the context of building a multivariate input-output 
regression model.  As noted earlier, the square of the PRCC gives the increase in R2, when a new variable is added, as a frac-
tion of the currently unexplained variance in the model.  From a practical standpoint, ranking the variables with PRCCs and 
examining scatter plots to understand input-output relationships would be a reasonable strategy for sensitivity analysis of 
probabilistic models when inputs are correlated. 

5 CONCLUSION 

This paper has presented a practical method for calculating sensitivity coefficients and uncertainty importance rankings for 
correlated inputs.  The use of the partial correlation concept is well known in the linear regression and nuclear waste disposal 
safety analysis literature.  Based on those sources, the paper describes how PRCCs can be computed readily using simple ma-
trix algebra once the input-input correlation matrix and the input-output correlation vectors are obtained from the sampled 
values.  It is hoped that the Crystal Ball users’ community will find this methodology useful for identifying key drivers of un-
certainty in spreadsheet-based probabilistic models where two or more uncertain inputs are correlated. 
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