Challenges with Using Spreadsheets for Cost Analysis: ACE versus Spreadsheets

Executive Summary

ACEIT version 7.5
May 2017
Introduction

- Would you continue to use this...

- If you had one of these...
Decision makers need estimate information that is **accurate, timely and actionable**

- Spreadsheets have limitations in supporting cost estimating and analysis
 - Takes longer: more steps to build and maintain
 - Prone to inaccuracies
 - Oversimplified solutions due to limitations in spreadsheet mechanics
 - Managing scenarios with multiple What-if drills is difficult and time consuming
- ACE provides consistency and efficiencies
 - Government developed specifically to support cost estimating and analysis

This presentation explores the significant differences between spreadsheets and ACE; it demonstrates why ACE is the standard for many organizations
ACE Compared with Traditional Spreadsheets

- **ACE’s design promotes time savings and estimate accuracy**
 - Designed to apply cost estimating techniques with minimal effort
 - Minimizes time associated with spreadsheet structuring
 - Saves time to calculate core cost estimating techniques

- **Open architecture in spreadsheets creates major challenges**
 - **Takes longer** to set up; must create estimate structure, mechanics and methods
 - **Errors** can easily go undetected
 - **Limited standardization** presents difficulties in transferring estimates/models to other analysts for review, revision and follow-on effort
 - File link issues between estimate, documentation and reporting

A trained ACE user can build an estimate in a fraction of the time required to do the same effort in a spreadsheet.
The ACEIT Concept

- Approach to supporting cost estimates and analysis
 - Bring **structure** and **consistency** to the process
 - **Focuses on estimate methodology** rather than spreadsheet mechanics
 - Incorporate **approved processes** to perform repetitive functions
 - Eliminates many sources of errors found in spreadsheets
 - **Promote efficiency**; standardized methodology, auditing, documentation/reporting

- ACEIT is designed for and by cost analysts
 - Available to government, support contractors and commercial users
 - Training delivered by experienced cost analysts and ACEIT users
Approach for Spreadsheet and ACE Comparison

- Easiest way to understand differences between spreadsheets and ACE is to visualize a side by side example
- This exploration is broken into sections to compare different aspects of the key characteristics of cost estimates
 - Section 1: Basic Estimate Structure
 - Section 2: Basic Estimate Calculations
 - Section 3: Complex Estimating Problems
 - Section 4: Adding WBS Elements to the Estimate
 - Section 5: What if Drills
 - The imbedded uncertainty analytics in ACE are a known benefit: they are not highlighted in this presentation

This presentation shows items from a detailed example available on www.aceit.com
Example for Comparison

Power Generation Plant Example

- Defined WBS
 - RDT&E, Procurement and OS Phases
- Defined Ground Rules and Assumptions
 - Detailed Schedule
 - Plant Engine Quantities
 - 10 development
 - 70 time phased procurement
 - 10 year engine service life
 - Technical Characteristics
 - Material weights
 - Engine specifications
- Software Definition
 - Software Lines of Code
- Staffing Levels

- Estimate Documentation
 - What is being estimated
 - Estimating method applied

- Estimate Results and Reporting
Each major topic area is illustrated in both the spreadsheet and ACE

- Highlights challenges with spreadsheets and the benefits of ACE
All estimates need basic structure to calculate a credible estimate

Section 1: Basic Estimate Structure

- Estimate Layout
- Work Breakdown Structure (WBS)
 - Estimate WBS set up
 - WBS documentation and definition
 - WBS roll-up calculation
- Basic Inflation Calculation
 - Inflating source costs to Base Year of the estimate
 - Calculating Estimate Then Year budget results
- Setting up Ground Rules and Assumptions
 - Base Year of estimate
 - Underlying assumptions in creating the estimate

If the structure is not standardized the estimate quickly becomes unmanageable
Section #1 Estimate Layout

Challenges

- Estimate start focuses on estimate layout
- Work in many worksheets to organize data, calculations, and reports
- Training: new analyst must learn spreadsheet layout before work can begin

Benefits

- Estimate start focuses on WBS definition, input variables, and methodology building
- Single tabbed spreadsheet simplifies audit process: entire estimate visible by scrolling
- Training: ACE trained analysts can pick up new estimates and almost immediately make progress
Benefits

- No equations at parent rows
- Add, delete or move rows when the WBS/CES changes without re-writing summing equations
- Requires fewer equations
- Eliminates summing errors
- Calculates faster
- Equations focus on estimating methods not spreadsheet mechanics
- Easier to review and audit estimates

Challenges

- Parent sum equations must be defined for the entire WBS
- Difficulty inserting new WBS elements: requires equation modifications
- Some employ VB macros to calculate the WBS
 - Training required to write macros
 - Macros require maintenance
Section #1 Inflation Calculation

Challenges

• Updating inflation tables: high volume of small equation changes
• For inflation factor updates, links require updates and repairs
• Adding Fiscal Years (FYs) or expanding Approps used requires changes throughout the workbook

Benefits

• Inflation consistently applied
• No equations to incorporate inflation
• Easy to add new Approp. and FYs to the estimate
• Easy to update government inflation tables each year
Section #2

Basic Estimate Calculations

- Each estimate methodology consists of inputs, equations or throughputs

- Section 2: Basic Estimate Calculations

 - Estimate Inputs
 - Constant data inputs: non-costs
 - Constant cost inputs
 - Time phased data and costs
 - Schedule inputs: dates and durations

 - Basic Equations
 - Engineering build up equations
 - Factor analogy equations
 - Cost Estimating Relationships (CERs)

 - Time Phased Throughputs
 - Base Year and Then Year throughputs

A consistent approach to inputs, equations and throughputs is necessary for a defendable estimate
Section #2 Estimate Inputs

Benefits
- Input row definition institutes consistency: easy to follow, update and review
- Automated cost row handling
- Easy to change inputs
- Syntax check reduces errors
- Error log provides guidance to correct issues

Challenges
- Ensure all inputs are included
- Consistent input formatting to easily update and review
- Ensure that inflation is properly and consistently applied
- Track inputs used in multiple estimate methods
- Link inputs with logical relationships: link schedules and component-to-total system items
- Document: inputs and methods
- Changing estimating methods and inputs
- Project schedule is a main input for time phasing an estimate
- The total project schedule consists of the combined schedules of the individual elements
- Schedule changes, including slips, are part of estimate what if scenarios and project cost increases
- The basic elements for an activity schedule are:
 - Start date
 - Duration
 - Finish date
- Where possible strive to capture schedule logic (links between elements) to promote what if drills

Caution

- Significant cost changes can come from schedule changes
- Different tools have different approaches to calculating schedule dates
- Excel does not have built-in calendar logic to properly calculate schedule dates and duration
Section #2 Schedule Comparison

- Excel’s DAYS360() and Edate() functions produce schedule approximations
- ACE uses a full calendar to calculate schedule logic
 - Calculates End Dates with DateAdd(StartDate, years, months, days, truncate)
- Small deviations in schedule calculations on individual rows build throughout the estimate

<table>
<thead>
<tr>
<th>Course</th>
<th>Excel Start Date</th>
<th>Excel Duration</th>
<th>Excel End Date</th>
<th>ACE Start Date</th>
<th>ACE Duration</th>
<th>ACE End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI 1</td>
<td>1 Mar 2012</td>
<td>8 months</td>
<td>1 Nov 2012</td>
<td>1 Mar 2012</td>
<td>8 months</td>
<td>2 Nov 2012</td>
</tr>
<tr>
<td>CSCI 2</td>
<td>1 Nov 2012</td>
<td>9.2 months</td>
<td>1 Aug 2013</td>
<td>2 Nov 2012</td>
<td>9.2 months</td>
<td>7 Aug 2013</td>
</tr>
<tr>
<td>CSCI 3</td>
<td>1 Aug 2013</td>
<td>13.7 months</td>
<td>1 Sep 2014</td>
<td>7 Aug 2013</td>
<td>13.7 months</td>
<td>26 Sep 2014</td>
</tr>
</tbody>
</table>

Excel schedule is 25 days shorter than the ACE calculated schedule
High quality cost estimates require next level techniques to capture the complexities and reporting requirements of government engineering projects

Section 3: Complex Estimating Problems

- Some Complex Examples:
 - Learning Curves
 - Schedule Calculations
 - Automating Estimates: Logic and Schedule Functions
 - Schedule Logic
 - Fielded Schedule
 - Upgrade/Refresh

ACE can solve complex estimate problems
Contact our support team and we can show you how

ACEIT support team at aceit_support@tecolote.com
Time phased learning curves are difficult to implement in spreadsheets

- Common approach: calculate annual learning factor to apply to T1 and annual units
 - Factor equation is a large nested IF/then function (see below)

Challenges
- Managing a multi-step process: T1, 1st Year learning factor, subsequent year learning factors, and annual learning production result
- T1 must be identified first
- Working with large nested IF functions
- Even more complicated equation needed for advanced learning applications
Section #3 Learning Curves

- Learning curve equations are built into ACE
- T1 automatically calculated from any unit number, any cumulative avg or any lot total cost

Benefits
- No large nested IF functions
- Easy to:
 - Change/compare theories
 - Incorporate prior quantities
 - Set slope as an estimate variable with uncertainty
 - Set up broken learning
 - Share curve on multiple rows

ACE focuses attention on the learning inputs not the curve mechanics
Section #3 Fielded Schedules

Fielded schedules should be calculated from production quantities

Benefits
- Functions calculate from simple set of parameters
- Time phased parameters offer even more flexibility
- The parameters can also be variables for What ifs

Challenges
- Automating fielding is time consuming and difficult to maintain
- Manually entered fielded quantities becomes the norm

OpFieldedUnits(@Qty, OpLife, Lag)
Fielding calculated from:
Production quantity, Operational life and Lag before fielding begins
Estimates evolve over the life cycle of a program
- Projects become more defined and more detailed estimate are required
- Adding WBS elements to an estimate is common and necessary

Adding a WBS element to a spreadsheet
- Requires many steps
- Requires repeated entry of the same information on multiple worksheets

ACE is designed to easily make changes to the WBS
Section #4 Highlights

- Spreadsheet steps outlined
 - Example adds software site activation and upgrade to the estimate

Adding two WBS items needs six slides to explain how to update estimate
Summary of steps to add new WBS methods to ACE

1. Add WBS elements: Insert new elements to WBS on Methodology Workscreen
2. Develop estimating methods: enter one equation for each element
 - Set up all inputs: link to existing elements where possible
 - Develop equations
 - Calculate the estimate: press Calc. button
3. View results in Input/Results Viewer: BY, TY etc.
4. Run standard or custom reports and charts

ACE process has less steps and takes far less time to implement
Section #5 What If Drills

- Decision makers explore different program options to save money, time or meet a constrained budget

- Running what if drills can answer questions like:
 - “What’s the cost if we change the number of engines each year?”
 - “What’s the impact of two more years of system operation?”
 - “How much more will it cost if we add requirements to the software?”
 - “How many units can I buy for x budget?”

- Analysts need to provide a project estimate but also model various what if scenarios
 - Spreadsheets provide only an *estimate* solution
 - ACE provides both an *estimate* and *model* solution

What If case analysis is where ACE far out performs spreadsheets
Section #5 Spreadsheet: What Ifs

- Difficult to store inputs, calculate and view results in one workbook
- Most common approach: Multiple copies of the workbook

Challenges
- Managing multiple spreadsheet files for the program
 - Changes must be performed in all copies
- Comparing case results side by side
 - Results are in multiple spreadsheets
- Cumbersome file links often fail
- Difficult to view case input changes
Section #5 ACE: What Ifs

- Conduct an unlimited number of What if Drills in one file
- Inputs/Results Viewer designed to manage and view What if cases
 - View: Inputs, BY Results, TY Results, Present Value and RI$K Statistics
 - Mode: Phased by Case, Phased by WBS, Cases by Total or Cases by FY

Benefits
- Side-by-side case comparison
- Case viewer allows comparison without additional report set up
Section #5 ACE: What Ifs

- Override model baseline total and time phased inputs

Benefits
- All cases in one view
- Total and time phased overrides
- Overrides clearly identified: blue/bold
Section #5 ACE: What Ifs

Compare case results side by side

Benefits
- One file: No links between files that break
- Reorder cases as project evolves
- Compare cases for any row
- Switch between Total and Time Phased comparisons
Section #5 ACE: What Ifs

- Generate charts highlighting case results
- Export charts to Power Point with one click update

Benefits
- Built in charting tool
- All cases in one file: No file links
- Chart any or all cases, total and time phased
The rest of the story

This is only a taste of the benefits of ACE over spreadsheets

- **Uncertainty:** RI$K is integrated into the ACE software; it is not an add on
- **Documentation:** ACE includes integrated and automated documentation
- **Session Properties:** Easily change the session Base Year, Units, Fiscal Years and Inflation Tables without having to change any equations
- **Phasing Methods:** ACE Phasing methods direct how to time phase the estimate without repeating equations across the fiscal years
- **CER Estimating Methods:** ACE implements CERs once with proper cost parameters and documentation
- **Schedule Logic:** ACE easily incorporates schedule logic into its time phasing
- **Cost Estimating Functions:** ACE offers many calculations functions specifically tailored to cost analysis
- **Utilities and Wizards:** added features to assist with proper set up and best practices
- **API and Plug-ins:** Full functional API, connect to other tools
A cost analyst must perform many activities to develop credible point estimates

- Develop a model by estimating each WBS element, with the best method from available data
- Include estimating ground rules and assumptions that best address the scenario
- Express the results in constant and budget dollars
- Time phase the results based on a program schedule
- Add WBS elements or update the model as the project evolves

Avoid the traps of spreadsheets and use a tool built for cost analysis

The US Army, US Air Force, DHS, FAA and Australia DoD use ACE as a standard tool

This brief summarizes “Challenges with Using Spreadsheets for Cost Analysis: Why ACE is a Superior Option”

Detailed Package includes:
- **PowerPoint Presentation**: ACE versus Spreadsheets Summary.pptx
- **Spreadsheet Example**: PowerPlant Spreadsheet Model Oct 2016.xlsx
- **ACE Example**: Power Plant Demo ACE vs Spreadsheet Oct 2016.aces

The larger brief can be downloaded from www.aceit.com and studied for deeper exploration
Download Information

- Detailed example files available in the Resource Library at www.aceit.com
THANK YOU