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ABSTRACT 

This paper was motivated by analysts who noticed that the same dataset could obtain a similar 

cost estimating relationship (CER) using different regression methods, but would yield a 

different uncertainty analysis based on the regression method used. While the point estimate 

would be similar, how the point estimate was interpreted (mean, median, mode, something else) 

and the uncertainty distribution assumption and construction were different. This paper is the 

result of a study we performed to provide a comprehensive discussion and a systematic approach 

to bring consistency to the application of uncertainty in our cost models (including MUPE and 

ZMPE).  

Log transformation and weighted least squares are commonly used to develop multiplicative 

error cost estimating relationships. We objectively compare the two regression techniques and 

provide a sound defense of log-linear ordinary least squares (LOLS) to counter arguments 

against its use. We then demonstrate how the uncertainty modeling can vary substantially based 

on the selected regression method even when the point estimates are quite close. Lastly, we 

establish the criteria that will lead to a justifiable uncertainty assignment when using LOLS.  

1 BACKGROUND 

In this section, we review the multiplicative and additive error models as well as the LOLS, 

MUPE, and ZMPE regression techniques. We also provide basic definitions and establish some 

terminology. 

1.1 ADDITIVE AND MULTIPLICATIVE ERROR MODELS 

The given dataset on which regression is performed will be denoted as (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑛 . Here  𝑥𝑖 

represents the cost drivers and 𝑦𝑖 – the observed costs. The hypothetical equation that models the 

relationship between cost and cost drivers is given by: 

𝑦 = 𝑓(𝑥, 𝛽). 

The unknown parameters 𝛽 = (𝛽1, … , 𝛽𝑝) are to be solved by the regression process and the 

corresponding estimates will be denoted as �̂� = (�̂�1, … , �̂�𝑝 ). The predicted cost is given by �̂� =

𝑓(𝑥, �̂�). 

The difference between the observed and the hypothesized cost at the 𝑖𝑡ℎ data point, i.e.  𝑦𝑖 −
𝑓(𝑥𝑖, 𝛽), will be referred to as the residual error. The fundamental difference between the 

multiplicative and additive error models is based on the decision to model the magnitude of the 

residual error as a constant value through the entire data range (additive) or as a value varying 

proportionally to the level of the hypothetical equation (multiplicative). The latter is the most 

intuitively correct for most cost analysis applications, but we will investigate both. 

 

The additive error model is given by the equation 

𝑦𝑖 =  𝑓(𝑥𝑖 , 𝛽) + 𝜀𝑖  
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where 𝜀𝑖 is the error associated the observed cost at the 𝑖𝑡ℎ data point. The error 𝜀𝑖 is assumed to 

have a mean 0 and a variance 𝜎2, for each 𝑖 .The implication of this model is that the residual 

error is constant throughout the entire data range.1 

The objective of the regression analysis in the additive error model setting is to solve for the 

coefficients 𝛽 that minimize the sum of squared errors: 

∑ 𝜀𝑖
2  

𝑛

𝑖=1

= ∑(𝑦𝑖 −  𝑓(𝑥𝑖, 𝛽))
2

 

𝑛

𝑖=1

 

The measure of how well the derived predicted costs �̂�𝑖 approximate the observed costs is called 

standard error of estimated (SEE): 

 𝑆𝐸𝐸 =  √∑
1

𝑛 − 𝑝
(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖=1

    ( 1 ) 

where n is the number of data points in the sample and p is the number of coefficients estimated 

in the hypothetical equation.  For the multiplicative error model, we have: 

𝑦𝑖 =  𝑓(𝑥𝑖, 𝛽) ∗ 𝜀𝑖  

The assumption for the error term 𝜀𝑖 is that it has mean 1 and variance 𝜎2 (for each 𝑖). The error 

term can be further broken down into the form: 

𝜀𝑖 = 𝑒𝑖 − 1. 

The variable 𝑒𝑖 is referred to as the generalized error term with mean 0 and variance 𝜎2. 

Furthermore, the generalized error can be expressed as: 

𝑒𝑖 =
𝑦𝑖 −  𝑓(𝑥𝑖, 𝛽)

𝑓(𝑥𝑖 , 𝛽)
  

The interpretation of the above expression is that the residual error is proportional in magnitude 

to the hypothetical equation (rather than being constant as in the additive error model). The cost 

estimating community prefers the multiplicative error model because practice shows that 

observations that are bigger in magnitude tend to produce a proportionally bigger error in 

absolute terms. 

The multiplicative error regression analysis seeks to minimize the sum of the squares of the 

generalized error term: 

∑ 𝑒𝑖
2  

𝑛

𝑖=1

= ∑ (
𝑦𝑖 −  𝑓(𝑥𝑖, 𝛽)

𝑓(𝑥𝑖, 𝛽)
)

2𝑛

𝑖=1

 

                                                 

 

1 This is not to be confused with the confidence or prediction interval which is based on the residual error, but also a 

function of location within the dataset. 
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The analogue to the additive error model SEE quantity that measures the “goodness of fit” of the 

predicted costs �̂�𝑖 is referred to as standard percent error (SPE) and is given by: 

 𝑆𝑃𝐸 =  √∑
1

𝑛 − 𝑝
(

𝑦𝑖 −  �̂�𝑖

�̂�𝑖
)

2𝑛

𝑖=1

   ( 2 ) 

1.2 LOLS, MUPE, AND ZMPE REGRESSIONS 

In this paper, we consider three popular optimization techniques: LOLS, MUPE, and ZMPE. 

They will be applied to the following multiplicative error model:  

 𝑦𝑖 = 𝑎𝑥𝑖
𝑏 ∗ 𝜀𝑖 ( 3 ) 

The LOLS model further assumes that the error term is normally distributed with a mean 0 and a 

standard deviation 𝜎 in log-space, i.e. log-normally distributed in unit space. In the case of 

MUPE and ZMPE, the error term is assumed to have a mean of 1 and a standard deviation 𝜎 in 

unit space. 

LOLS (log-linear ordinary least squares): optimization is performed in log-space and the first 

step of the process is to take the natural log of each side of equation ( 3 ): 

ln(𝑦𝑖) = ln(𝑎) + 𝑏 ln(𝑥𝑖) + ln(𝜀𝑖) 

The above expression in log-space can be regarded a linear additive error model. As a result, 

OLS can be applied to minimize the sum of squares ∑(ln 𝜀𝑖)
2 and to solve for the parameters. 

The results can be further transformed back to unit space by exponentiation.  

MUPE (minimum unbiased percent error): is an iterative optimization technique. At the 𝑘𝑡ℎ 

iterative step, MUPE solves for the coefficient 𝛽𝑘 that minimizes the quantitiy: 

∑ (
𝑦𝑖 − 𝑓(𝑥𝑖, 𝛽𝑘)

𝑓(𝑥𝑖, �̂�𝑘−1)
)

2𝑛

𝑖=1

 

where, �̂�𝑘−1 is the coefficient estimate obtained in the previous iteration. The final coefficient 

solution �̂� is obtained when the change in the coefficient estimates in successive iteration steps is 

within a predefined tolerance limit. 

A property of the MUPE iterative process is that the cost predictions �̂�𝑖 satisfy a zero percentage 

error (sample bias), i.e. 

∑
𝑦𝑖 − �̂�𝑖

�̂�𝑖

𝑛

𝑖=1

= 0 

ZMPE (zero bias minimum percent error): is an optimization technique to reduce the 

percentage error. The ZMPE method imposes zero bias as a constraint in the optimization 

process. In other words, ZMPE seeks to directly minimize 

∑ (
𝑦𝑖 −  𝑓(𝑥𝑖, 𝛽)

𝑓(𝑥𝑖, 𝛽)
)

2𝑛

𝑖=1
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subject to the constraint: 

∑
𝑦𝑖 − �̂�𝑖

�̂�𝑖

𝑛

𝑖=1

= 0 

2 COMPARISON 

The LOLS regression method has been subject to academic concerns and its validity has been 

questioned. In this section, we defend the LOLS model against common criticism and provide 

legitimate reasons why it is a relevant optimization choice. Furthermore, we objectively compare 

the LOLS, MUPE, and ZMPE regression processes by discussing their advantages and 

disadvantages. 

2.1 LOLS PROS AND CONS 

We start by addressing the strengths of the LOLS regression. If the assumptions of log-space 

linearity of the CER and the normal distribution of the error term in log-space are satisfied, then 

the LOLS process can be regarded as a preferable choice over MUPE and ZMPE for its well 

established and analytically sound uncertainty assignment process. 

The log-linear nature of the hypothetical equation allows for OLS regression to provide 

coefficient estimates. Unlike the MUPE and ZMPE, the OLS solution for the coefficients is 

analytical and unique. This is a considerable advantage which completely bypasses reliability 

issues that MUPE and ZMPE face such as consistency of the coefficient estimates, dependence 

of the solutions on starting input, convergence and stability of the methods (getting stuck in a 

local minimum due to choice of starting points), etc. Moreover, LOLS regression is linear in 

nature, while MUPE and ZMPE rely on nonlinear computations which could easily become 

tedious and cumbersome to validate. 

The analytical solution of the LOLS’ coefficients is a major advantage in the field of uncertainty 

assignment. Assuming a log-normally distributed error term in unit space, LOLS analytic 

approach leads to a sound and justifiable uncertainty distribution assignment for the CER result 

(details provided below). The distribution shape is proven to be log-normal in unit space, and PE 

location within the distribution is established to be the median. As a result, prediction intervals 

(PI) can be precisely generated. Unlike the LOLS technique, regressions such as ZMPE provide 

neither a mathematically proven error distribution type nor a verified location for the PE. 

LOLS regression also has the advantage of providing goodness-of-fit measures that are essential 

for a thorough analysis of the quality of the fit in log-space. As a result, the significance of the 

coefficients can be analyzed, outliers can be detected, and model flaws can be exposed. Other 

optimization techniques, such as ZMPE, provide only a limited goodness of fit measures and 

therefore restricted options for analyzing the fit quality. 

Next, we address the concerns raised in reference [1] about the LOLS model. We show that, 

except for one case, the reported flaws and the criticism are invalid and unjustifiable. 

(1) The LOLS objective is to minimize the quantity 

∑(ln 𝑦𝑖 − ln 𝑎 − 𝑏 ln 𝑥𝑖)2 = ∑(ln 𝜀𝑖)2
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Reference [1] regards this as a flaw by stating that minimizing ∑(log 𝜀𝑖)
2 is not the same as 

minimizing the sum of squared error ∑ 𝑒𝑖
2: 

∑(𝑦𝑖 − 𝑎𝑥𝑖
𝑏)

2
 = ∑ 𝑒𝑖

2 

The LOLS optimization process, however, was never intended to minimize ∑ 𝑒𝑖
2. As a 

multiplicative error model, LOLS goal is to minimize the sum of squared percentage errors, 

not the sum of squared absolute errors (which is the objective of additive error models). It 

is inappropriate to compare the fit measure of different error model when they have 

different fit criteria. 

(2) The second concern from reference [1] is that the log-space error term ln(𝜀𝑖) is 

expressed in meaningless units (i.e. log of dollars instead of dollars). An immediate 

response is that the error term 𝜀𝑖 is never measured in dollars for a multiplicative error 

model. Instead, 𝜀𝑖 is a unit-less ratio by design. Moreover, the error term ln(𝜀𝑖) does have a 

meaningful interpretation. By Taylor series expansion, we have 

ln(𝜀𝑖) ≈  𝜀𝑖 − 1 =  
𝑦𝑖 − 𝑓(𝑥𝑖, 𝛽) 

𝑓(𝑥𝑖 , 𝛽)
 

The expression on the right-hand side can be recognized as the percentage error term which 

is incorporated into the objective function of the multiplicative error model. 

(3) The log-space transformation process is further criticized for restricting the CER choice 

to power forms such as 𝑦 = 𝑎𝑥𝑏. Indeed, the OLS method cannot handle fixed cost 

equations 𝑦 = 𝑎𝑥𝑏 + 𝑐 because they are nonlinear in log-space (the distributive nature of 

the log function is not compatible with additive terms such as 𝑐). However, we are not 

limited to the OLS regression. Multiplicative error models 𝑦 = (𝑎𝑥𝑏 + 𝑐) ∗ 𝜀 still become 

additive in log-space and they can readily be handled by non-linear optimization. We 

should keep in mind that the choice of the CER and the error model should be driven by 

technical grounds and logic and not by the desire to perform a preselected regression 

technique. 

(4) The one shortcoming raised in reference [1] about the LOLS method that we 

acknowledge is the fact that the LOLS solution is biased in unit space. In log-space, the 

OLS regression derives an equation with zero bias: 

1

𝑛
 ∑(𝑙𝑛�̂� + �̂� 𝑙𝑛𝑥𝑖 − 𝑙𝑛𝑦𝑖)  = 0

𝑛

𝑖=1

 

In unit space, however, the corresponding CER has a non-zero proportional error over the 

dataset: 

1

𝑛
 ∑

(𝑦𝑖 − �̂� 𝑥𝑖
�̂�)

�̂� 𝑥𝑖
�̂�

≠ 0

𝑛

𝑖=1

 

To remove the bias, multiplicative factors have been developed (see reference [4]) so that 

the corrected LOLS CER estimates the mean in unit space. However, these adjustments are 

rarely necessary. Many different estimating methods are used throughout the work 

breakdown structure (WBS). It is not uncommon to have to add a mean, median, mode, or 
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some percentile because either policy of the method itself yields these types of results. We 

know the LOLS produces the median. Using that as the point estimate directly and as one 

point in the log-normal distribution (using the prediction interval for a second point) 

uniquely defines the uncertainty distribution. It will be the exact same distribution if you 

chose to adjust the PE to reflect the mean. There would be no impact on the uncertainty 

simulation. So why complicate the situation by including an adjustment factor? 

2.2 MUPE & ZMPE PROS AND CONS 

We finish this section by addressing the strengths and weaknesses of the MUPE and ZMPE 

regression. These two methods have been thoroughly compared and contrasted in reference [6]. 

A summary of the main observations from that reference are as follows. 

MUPE Pros  

 The MUPE regression provides estimators with zero percent bias directly in unit space. 

Unlike the LOLS process, no transformation or correction factors are applied to the CER 

result. 

 For linear CERs, MUPE provides the best linear unbiased estimates (BLUE) solutions for 

the parameters. Under the same linear assumptions, ZMPE solutions are not BLUE. For 

nonlinear CERs, MUPE gives consistent estimates for the parameters and mean of the 

equation. Moreover, the parameter estimates are the maximum likelihood estimators 

(MLE). 

 Under the normality assumption, the MUPE process provides a wider variety of goodness 

of fit measures than ZMPE to judge the quality of the model. In particular, statistical 

tools are available to analyze significance level of the coefficient estimates which helps 

detect model flaws. 

 Statistical tools are available to provide prediction interval for MUPE’s CER result. 

MUPE Cons  

 The MUPE regression relies on non-linear optimization which can be a cumbersome 

process. 

 MUPE’s iterative process does not always converge. 

ZMPE Pros  

 Similar to the MUPE method, an unbiased CER result is provided without the need of 

transformation or adjustment factors. 

 ZMPE’s standard percent error is reported to be smaller than MUPE’s SPE (Remark: 

This statement is actually not true if the ZMPE’s SPE is adjusted to reflect the 

generalized degree of freedom, which accounts for the regression constraint, as 

recommended in reference [3]). 

ZMPE Cons  

 ZMPE’s solution finding process can be less reliable than MUPE and far less than LOLS. 

ZMPE’s optimization fails to converge more often as a result of a tendency to being 

trapped in local minima. Stability of ZMPE’s solutions is directly linked to Solver’s (or 

other selected optimization tool) sensitivity to the input starting points. 
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 The only goodness of fit measures available for the ZMPE regression are the SPE and 

R2. However, there is not enough information to analyze coefficient significance which 

further translates into an inability to characterize the statistical significance of the model. 

 The location of the CER result with the uncertainty distribution (mean, median, mode, 

etc.) is not established. Mode of a triangle has been used, but the choice is arbitrary. 

Neither the distribution shape nor its dispersion can be formally determined. Therefore, 

confidence and prediction intervals are unavailable. 

 Similarly to MUPE, ZMPE optimization relies on non-linear regression which can be a 

tedious process. 

3 UNCERTAINTY 

Of the three regression techniques discussed in this paper, the LOLS method leads to the most 

precise and justifiable uncertainty assignment for the CER result (assuming that one can justify 

the error is log-normally distributed in unit space). In this section, we provide the mathematical 

derivation of the uncertainty distribution for the LOLS CER. In particular, we show that the CER 

result is the median of a log-normal distribution. In contrast, the techniques available for 

uncertainty assignment to ZMPE’s predictors are arbitrary, subjective, and not mathematically 

supported. In an effort to establish consistency, we propose a systematic approach to assign 

uncertainty to ZMPE’s CER result. We also briefly discuss MUPE’s uncertainty assignment 

process which is analytical in nature but is based on approximation. We finish the section with 

examples that compare the uncertainty results of the three regressions and we present our 

conclusions based on the observations. 

3.1 LOLS UNCERTAINTY 

We will show that the uncertainty distribution around the LOLS CER result is given by the 

following expression: 

 LOLS CER Uncertainty:   �̂�0 ∗ 𝜀0̂   𝑤ℎ𝑒𝑟𝑒   𝜀0̂ ~ 𝐿𝑁(0, 𝜎2 [1 + 𝛾2(𝑋, 𝑥0)]), ( 4 ) 

where �̂�0 is the LOLS predictor at a given cost driver point 𝑥 = 𝑥0. We note that �̂�0 is the 

median of the log-normal distribution in ( 4 ) (see reference [4]). We use the following notation: 

 

 

𝛾2(𝑋, 𝑥0) =   (1, ln(𝑥0)) (𝑋𝑇𝑋)−1(1, ln(𝑥0))𝑇    

=  
1

𝑛
+

(ln(𝑥0) − ln(𝑥))
2

∑ (ln(𝑥𝑖) − ln(𝑥) )
2

𝑛
𝑖=1

  ( 5 ) 

The above term can be interpreted as a location factor that captures the location of the estimating 

point 𝑥0 relative to the mean  ln(𝑥) of the cost driver sample in log-space.  

The only unknown in expression ( 4 ) is 𝜎, the standard deviation of the observed cost error. 

However, in practical applications, it can be approximated the by LOLS’ SEE in log-space since 

𝐸[𝑆𝐸𝐸2] =  𝜎2. 
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To derive the above formula, we start by rewriting the log-linear error model in the form 

𝑦𝑖 = 𝑒𝛽0  𝑥𝑖
𝛽1 𝜀𝑖  

which is more suitable for manipulations in log-space. The error term is assumed to be log-

normally distributed in unit space: 𝜀𝑖 ~ 𝐿𝑁(0, 𝜎2). Taking the natural log of each side of the 

equation, we get: 

 ln(𝑦𝑖) =  𝛽0 +  𝛽1 ln(𝑥𝑖) + ln ( 𝜀𝑖)    with   ln(𝜀𝑖) ~ 𝑁(0, 𝜎2) ( 6 ) 

Therefore, the distribution of the dependent variable  ln(𝑦) for a given cost driver 𝑥 = 𝑥0 is 

given by: 

ln(𝑦0)~ 𝑁 (  (1, ln(𝑥0)) (
𝛽0

𝛽1
) ,   𝜎2) 

Since equation ( 6 ) is a linear additive error model, OLS regression can be applied to solve for 

the coefficients in log-space. It can be shown that the OLS coefficient estimates and their 

uncertainty are given by: 

�̂� =  ( 𝑋𝑇  𝑋)−1 𝑋𝑇  ln(𝑌)    with   �̂� ~ 𝑁( 𝛽 , 𝜎2 (𝑋𝑇 𝑋)−1) 

In the above expression, we use the notation: 

�̂� = (
�̂�0

𝛽1
) , 𝑋 =  (

1 ln(𝑥1)
⋮ ⋮
1 ln(𝑥𝑛)

) , ln(𝑌) =  (
ln(𝑦1) 

⋮
ln(𝑦𝑛)

) 

with (𝑥𝑖, 𝑦𝑖)𝑖=1
𝑛  being the given dataset. 

Consequently, the OLS predictor in log-space is given by: 

ln(�̂�0) = �̂�0 +  �̂�1 ln(𝑥0) = (1, ln(𝑥0)) (
�̂�0

�̂�1

) 

and it follows a normal distribution: 

ln(�̂�0) ~ 𝑁 ((1, ln(𝑥0)) (
𝛽0

𝛽1
),   𝜎2 ∗  𝛾2(𝑋, 𝑥0)) 

where 𝛾2 is given by ( 5 ). 

The prediction error (the error between the predicted and the observed value) and its distribution 

are therefore given by:  

ln(𝜀0̂) = ln(𝑦0) − ln(�̂�0) ~ 𝑁(0,   𝜎2 [1 + 𝛾2(𝑋, 𝑥0)] ) 

The uncertainty of the predicted cost in log-space is therefore: 

ln(�̂�0) + ln(𝜀0̂)     with    ln(𝜀0̂) ~  𝑁(0,   𝜎2 [1 + 𝛾2(𝑋, 𝑥0)] ) 

Taking exp () on each side, we arrive at ( 4 ). 

3.2 MUPE\ZMPE UNCERTAINTY 

The uncertainty assignment for the MUPE CER results is based on analysis that involves Taylor 

series linearization (see reference [5]). It is an analytical method but it involves approximations 
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and does not have the precision of LOLS’ uncertainty closed-form formula. The prediction 

intervals for MUPE regression can be provided by statistical tools. 

For the ZMPE regression there is no established and analytically supported process for CER 

uncertainty assignment. The shape of the uncertainty distribution is generally unknown and so is 

the position of the CER result.  

To provide some structure and consistency in the uncertainty assignment for the ZMPE CER 

result, we propose a procedure that uses the statistics of the ratio of observed and predicted cost. 

In particular, we start by fitting a distribution curve through the points {
𝑦1

�̂�1
, … ,

𝑦𝑛

�̂�𝑛
}. The exact 

fitting process is proposed in reference [2] and it takes into account the location of the driver 𝑥0 

relative to the other cost drivers. The fitted curve, which we find with the help of statistical tools, 

represents the error distribution around the CER result �̂�0 at given cost driver 𝑥 = 𝑥0. Since we 

are assuming multiplicative error model, the final uncertainty distribution is given by: 

 �̂�0 ∗ Fitted Distribution Curve 𝑜𝑓 {
𝑦1

�̂�1
, … ,

𝑦𝑛

�̂�𝑛
} 

( 7 ) 

 

3.3 EXAMPLES 

The LOLS, MUPE, and ZMPE regressions differ not only by the optimization process that 

derives the CER result, but also by the methods used to assign uncertainty to the predictors. To 

quantify the differences in the uncertainty results, we assign the uncertainty distributions 

presented above on specific data sets and we compare the corresponding 80th percentiles. 

Example 1 For our first example, we consider a hypothetical dataset of 7 data points. The 

observed costs were derived using the relation: 

 𝑦𝑖 = 0.07𝑥𝑖
1.8𝜀𝑖 ,      with    𝜀𝑖 ~ 𝐿𝑁(0, 𝜎2), ( 8 ) 

 

where 𝑖 = 1, … ,7. Choosing 𝜎 = 0.34 for the spread of the error term, we construct the 

following dataset: 

Observations 1 2 3 4 5 6 7 

X – Cost Driver 7.9 8.2 9.8 11.5 16.4 19.7 23.6 

Y – Observed Cost 1.6 3.2 2.3 5.1 7.5 16.3 14.5 

 

The table below summarizes the regression and uncertainty results for the LOLS, MUPE, and 

ZMPE methods. The first section of the table provides the CER equations of each regression 

along with the corresponding goodness of fit statistics: SEE (see equation ( 1 )), SPE (see 

equation ( 2 )), and CV. The remaining part of the table contains the point estimates (PE) and the 

80th percentiles (Ptile) of the uncertainty distribution all evaluated at the cost driver value 𝑥0 =
21. The percentiles in parenthesis next to MUPE’s and ZMPE’s PE and Ptile values denote the 

percent difference relative to the corresponding LOLS’ estimates. 
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LOLS MUPE ZMPE 

 

𝑦 = 0.038𝑥1.936 

SEE: 2.38  

𝑦 = 0.042𝑥1.913 

SEE: 2.386  

𝑦 = 0.046𝑥1.869 

SEE: 2.343 

SPE: 0.316 SPE: 0.302 SPE: 0.302 

CV: 0.329 CV: 0.330 CV: 0.324 

 

 LOLS MUPE ZMPE 

 PE 80 Ptile PE 80 Ptile PE 80 Ptile 

𝑥0 = 21 13.8 18.4 14.1(2%) 18.6(1%) 13.8(0%) 21.8(18%) 

 

LOLS CER uncertainty is computed by formula ( 4 ).  By construction, the error of the observed 

cost here follows log-normal distribution (see ( 8 )). Therefore, the use of ( 4 ) is justified here. 

ZMPE’s uncertainty is assigned as described in ( 7 ). In this particular case, the fitted distribution 

curve is a beta curve with parameters 𝛼 = 0.2, 𝛽 = 0.29, 𝑚𝑖𝑛 = 0.54, 𝑚𝑎𝑥 = 1.65. Finally, 

MUPE’s 80th percentile is computed with statistical tools. 

We notice in this example that ZMPE’s 80th percentile is 18% bigger than LOLS’ while the 

corresponding point estimates are identical. For MUPE, both the point estimate and the 80th 

percentile are close to LOLS’ values. 

Example 2 In our second example, we generate a hypothetical 9-point dataset from the equation:  

 𝑦𝑖 = 64𝑥𝑖
0.7𝜀𝑖 ,      with    𝜀𝑖 ~ 𝐿𝑁(0, 𝜎2),  

where 𝑖 = 1, … ,9 and  𝜎 = 0.34. 

Observations 1 2 3 4 5 6 7 8 9 

X – Cost Driver 5 5.2 7 10 12 17.8 18 21 25 

Y – Observed Cost 205.3 111 225.6 182.2 255.3 523.4 695.8 377 638.5 

 

The corresponding results table is: 

LOLS MUPE ZMPE 

 

𝑦 = 33.4𝑥0.9 

SEE: 121.7  

𝑦 = 35.5𝑥0.892 

SEE: 120.0  

𝑦 = 36.4𝑥0.881 

SEE: 120.2 

SPE: 0.343 SPE: 0.326 SPE: 0.326 

CV: 0.341 CV: 0.336 CV: 0.337 

 

 LOLS MUPE ZMPE 

 PE 80 Ptile PE 80 Ptile PE 80 Ptile 

𝑥0 = 22 539 732 559(4%) 741(1%) 555(3%) 813(11%) 
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Similar to Example 1, we notice that ZMPE leads to a relatively large (11%) difference in the 

80th percentiles compared to LOLS while the corresponding point estimates are only 3% apart. 

MUPE’s and LOLS’s 80th percentiles differ by only 1%. 

 

 

Example 3 We start with the following 13 data points: 

Obs. 1 2 3 4 5 6 7 8 9 10 11 12 13 

X  40 50 75 75 75 100 100 240 250 300 550 670 780 

Y  10 45 50 70 65 100 90 120 100 80 200 230 300 

 

Remark: The observed cost in this example is not assumed to be generated from any specific 

hypothetical equation and error term distribution. 

The results are given below: 

LOLS MUPE ZMPE 

 

𝑦 = 2.059𝑥0.7336 

SEE: 27.19  

𝑦 = 3.047𝑥0.67 

SEE: 27.277  

𝑦 = 4.359𝑥0.6 

SEE: 30.19 

SPE: 0.392 SPE: 0.337 SPE: 0.329 

CV: 0.242 CV: 0.243 CV: 0.269 

 

 LOLS MUPE ZMPE 

 PE 80 Ptile PE 80 Ptile PE 80 Ptile 

𝑥0 = 500 196 297 196(-0%) 259(-12%) 181(-7%) 244(-17%) 

 

In this case both MUPE’s and ZMPE’s 80th percentiles differ substantially from LOLS value 

(- 12% and -17%, correspondingly). At the same time, the point estimates of MUPE and LOLS 

are identical. 

3.4 CONCLUSION 

As the three examples from the previous section demonstrate, LOLS, MUPE, and ZMPE 

regressions can lead to substantially different uncertainty results even in cases when the point 

estimates are not too far apart. In the first two examples, the error of the observed cost is known 

to be log-normally distributed. Therefore, LOLS uncertainty results are sound and 

mathematically justified. Other non-linear regressions, such as ZMPE, do not have an established 

uncertainty assignment procedure and the corresponding uncertainty results are not as reliable. 

As a result, whenever there is enough evidence that observed cost is log-normally distributed, we 

recommend using LOLS regression. 

For the data set in the last example, we have no solid reasons to believe that the observed cost is 

generated from a log-normally distributed error term. Thus, LOLS uncertainty assignment can no 

longer be regarded as more precise compared to ZMPE and MUPE. In such cases, we still have 
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confidence in the LOLS method because it is stable and the CER results are analytically sound. 

However, there are no compelling reasons to reject MUPE or ZMPE regressions in these 

circumstances.  Just beware that they are sensitive to the assigned starting position and the 

uncertainty assignment is an assumption. Some prefer MUPE and ZMPE because the CER 

results have a zero percentage bias without the need of correction factors, but as stated earlier 

that is actually of no significance when it comes to uncertainty assignment.
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