

Cost Risk Analysis "Standards"

Alfred Smith, Dr. Shu-Ping Hu 13 April 2005

Los Angeles
 Washington, D.C.
 Boston
 Chantilly
 Huntsville
 Dayton
 Santa Barbara
 Albuquerque
 Colorado Springs
 Columbus
 Ft. Meade
 Ft. Monmouth
 Montgomery
 Ogden
 Patuxent River
 Pensacola
 San Diego
 Charleston
 Cleveland
 Denver
 New Orleans
 Oklahoma City
 Silver Spring
 Warner Robins AFB
 Vandenberg AFB

Describe a systematic simulation based cost risk analysis approach demonstrating how to model:

- CER risk (including factor relationships)
- Configuration (cost driver) risk
- Correlation (Pearson product moment, not Spearman rank order)

Propose standards to characterize and present the results

- Propose what needs to be "published" to bring standardization to Cost Risk analysis independent of the tool(s) selected
- Compare Crystal Ball, @Risk, ACE and FRisk to an analytically solved case study and case studies for which no analytical solution is feasible.

Previously presented to SCEA, AIAA, AFCAA, NAVSEA, USMC, NAVAIR, NASA CSG

Outline

- Setting the Stage: Overview of Existing Guidance
- Proposing a Process: A Six Step Cost Risk Analysis "Standard" Approach
 - Show how the NASA 12 Tenets are captured
 - Focus on modeling cost risk, configuration risk and correlation
 - Identify key decisions required to establish a standard approach
- Available Risk Simulation Tools:
 - Crystal Ball, @Risk, and ACE RI\$K all give the same results for the same problem (including correlation application).
 - How to ensure fair comparison across tools
- Concluding Observations

Setting the Stage

CSCI Testing

al Test and Evaluation

Cost Risk Analysis Publications

- Risk Management Policies from DoD 5000.4-M Cost Analysis Guidance and Procedures <u>http://acc.dau.mil/simplify/ev.php?ID=6388_201&ID2=D0_TOPIC</u>
- Department of the Army Cost Analysis Manual May 2002 <u>http://www.ceac.army.mil/ce/default.asp</u>
- (Air Force) Cost Analysis Guidance And Procedures 1 October 1997

http://www.saffm.hq.af.mil/afcaa/

- NASA Cost Estimating Handbook 2002 <u>http://www.jsc.nasa.gov/bu2/NCEH/</u> <u>http://www.jsc.nasa.gov/bu2/conferences/NCAS2004/index.htm</u>
- FAA Life Cycle Cost Estimating Handbook v2 03 Jun 2002 <u>http://www.faa.gov/asd/ia-or/lccehb.htm</u>
- Parametric Estimating Initiative (PEI) Parametric Estimating Handbook Spring 1999 <u>http://www.ispa-cost.org/PEIWeb/newbook.htm</u>
- Recent new AFCAA study by RAND. "Towards a Cost Risk Analysis Policy"

General Guidance that is Tough to Implement

- "Areas of cost estimating uncertainty will be identified and quantified."
- "Areas of uncertainty, such as pending negotiations, concurrency, schedule risk, performance requirements that are not yet firm, appropriateness of analogous systems, level of knowledge about support concepts, critical assumptions, etc., *should* be presented."
- "Uncertainty will be quantified by the use of probability distributions or ranges of cost."
- "Detailed back-up material will be provided."
- "Experts disagree on the sources of uncertainty in systems acquisition."

Uncertainty <u>commonly attempted</u> in cost risk models:

- Cost estimating relationship (CER) risk
- Cost factors such as labor rates, labor rate burdens, etc
- Configuration risk (variation in the technical descriptions driving the CERs)
- Schedule and technical risk (in excess of that captured in the CER)
- Correlation between risk distributions

Uncertainty <u>commonly missing</u> in cost risk models:

- Potential for massive and frequent requirements changes
- Budget Perturbations, Congressional actions
- Re-work, and re-test phenomena
- Contractual arrangements (contract type, prime/sub relationships, etc)
- Potential for disaster (labor troubles, shuttle loss, satellite "falls over", war, etc)
- Probability that if a discrete event occurs it will invoke a project cost
- **NOT** the subject of this presentation, even though **NASA Tenet 8** requires it and most DoD organizations want/need to see it captured in the estimate

TECOLOTE RESEARCH, INC. NASA Cost Risk Analysis Tenets

- 1. subset of cost estimating, supports optimum project management
- 2. common set of risk and uncertainty definitions
- 3. joint activity between subject matter experts and cost analysts

Presentation Focus

- 4. CER risk plus technical risk plus correlation
- **5.** combine probabilistic and discrete technical risk assessments
- 6. probability distributions are justifiable, correlation levels based on actual cost history
- 7. cost estimates are "likely-to-be" vice "as specified" for optimum credibility
- 8. account for all known variance sources and include provisions for uncertainty
- 9. cost-risk can be an input to every cost estimate's Cost Readiness Level (CRL);
- **10.** <u>integrates the quantification of cost-risk and schedule risk</u>
- 11. decision makers need to know:
 - How much money is in the estimate to cover risk events;
 - To which WBS elements are they allocated; and,
 - The confidence level of the estimate;

12. tons of stuff to be stored in the One NASA Cost Estimating (ONCE) database.

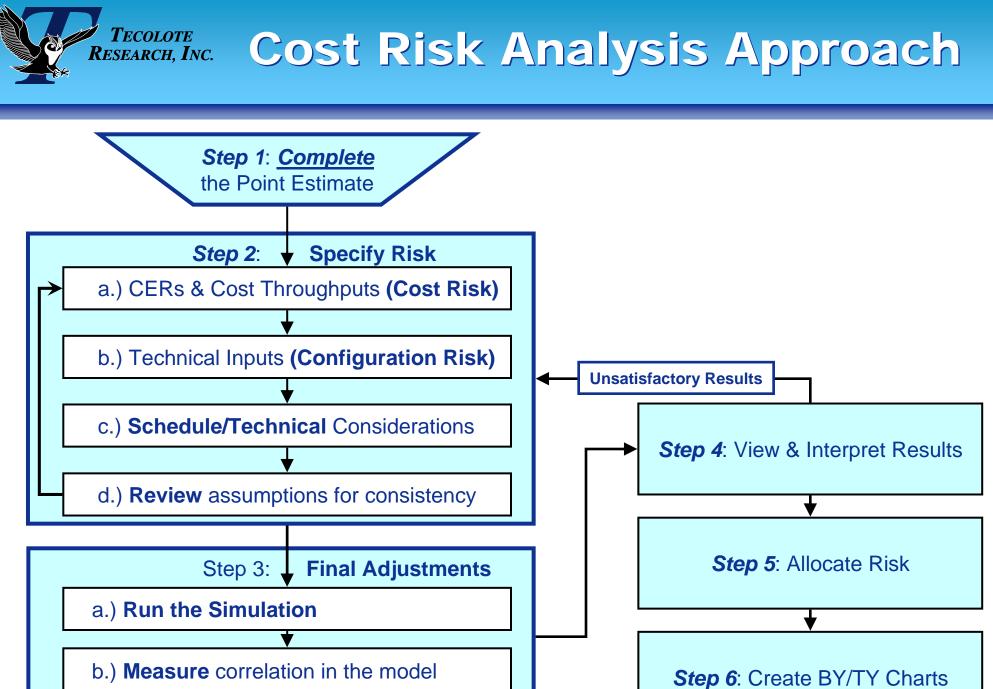
Index of most recent NASA cost risk papers: <u>http://www.jsc.nasa.gov/bu2/conferences/NCAS2004/index.htm</u> Description of NASA cost risk tenets: <u>http://www.jsc.nasa.gov/bu2/conferences/NCAS2004/presentations/2</u>

Common Cost Risk Analyst Observations

Analysts want to have...

- Clear guidance on how to conduct cost risk analysis
- Standard expectations for quality and completeness

Consistent approaches for:


- Interpreting the point estimate CER (mean?, median? mode?, other?)
- Sensitivity analysis vs. stochastic analysis?
- Selecting a distribution and its bounds? Are there defaults?
- Defining dispersion and/or correlation
- Adjusting risk for schedule/technical concerns?
- Planned growth (i.e., weight, power, operational profile, etc margins).
- Risk allocation
- How to sum costs with differing confidence levels (think software + hardware)
- What/how to present to managers (including BY vs. TY)

Analysts want to improve the quality of their risk adjusted cost estimates in a more productive/repeatable way.

Six Step Cost Risk Analysis Approach

Apply additional correlation as required

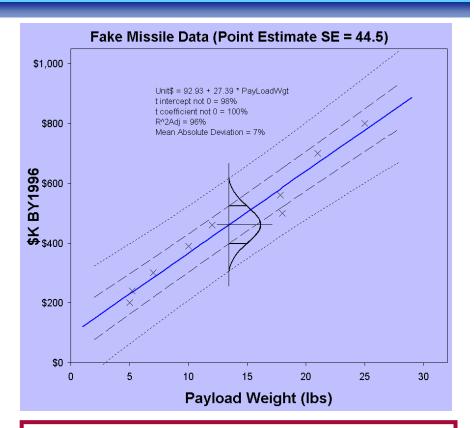
Step 1: The Point Estimate

WBS/CES Description	Appro	Unique ID	BASELIN	Pha sing	Equation / Throughput	Fiscal Year	Units
Pavload (P/L) Non Recu	SFCDC	*Payload	\$ 42,071 ×				
Payload IA&T	SFCDC		\$ 7,641 ×				
Integration, Assembly, Te	SFCDC		\$ 6,595 ×	BE	850.764 + 0.159 * PLPME	1992	\$K
Software Integration	SFCDC		\$ 1,046 ×	BE	.28*PLSW		
Payload PME NR	SFCDC	PLPME	\$ 34,430 ×				
PL Software	SFCDC	PLSW	\$ 3,735 ×	BE	SWPPM\$*(0.682+0.00006*Loc^1.32)		
Pointing Subsystem	SFCDC		\$ 25,480 ×				
Scan Mirror	SFCDC		\$ 1,249 ×	BE	70.215 * ScanMirrorStrWt^0.830	1992	\$K
Gimbal	SFCDC		\$19,041 ×				
Gimbal Structure	SFCDC		\$ 3,257 ×	BE	70.215 × GimbalStrWt^0.830	1992	\$K
Motor Drive Electro	SFCDC		\$ 892 ×	BE	416.033+23.754*MotorDrvPcdWt	1992	\$K
LOS Computer	SFCDC		\$ 7,785 ×	BE	256.878*LosCompDeWt	1992	\$K
IMU electronics	SFCDC		\$ 7,108 ×	BE	256.878*IMUElecDeWt	1992	\$K
Payload Reference Be	SFCDC		\$ 5,190 ×	BE	70.215 * BenchStrWt^0.830	1992	\$K
Thermal Control Subsyste			\$ 5,215 ×				
Active	SFCDC		\$ 2,631 ×	BE	205.155*TCSActiveThWt^0.635	1992	\$K
Passive	SFCDC		\$ 2,584 ×	BE	205.155*TCPassThWt^0.635	1992	\$K
*INPUT VARIABLES		*IN_VAR					
Monthly Software developmer	SFCDC	SWPPM\$	\$ 21 ×		20	2001	\$K
Software for payload SLOC		Loc	× 000,08		80000		
Scann Mirror weight		ScanMirrorStrWt	23 ×		23		
Gimbal structure weight		GimbalStrWt	73 ×		73		
Gimbl Drive motor weight		MotorDrvPcdWt	11 ×		11		
Los Computer weight		LosCompDeWt	23 ×		23		
IMU weight		IMUElecDeWt	21 ×		21		
Sensor Optical bench weight		BenchStrWt	128 ×		128		
Payload active thermal contro		TCSActiveThWt	36 ×		36		
Payload passive thermal contr		TCPassThWt	35 ×		35		

Elements of a Point Estimate:

- R&D, Procurement, and O&S
- Software, Hardware & Personnel
- Inherent levels of indenture
- Combination of methods:
 - Engineering build-ups
 - Linear/non-linear CERs
 - Pass-throughs, etc.
- CERs derived from historical data
- CERs (Judgmental)
- Inflation, learning, fee/overhead
- Phased & non-phased variables
- BY & TY phased results

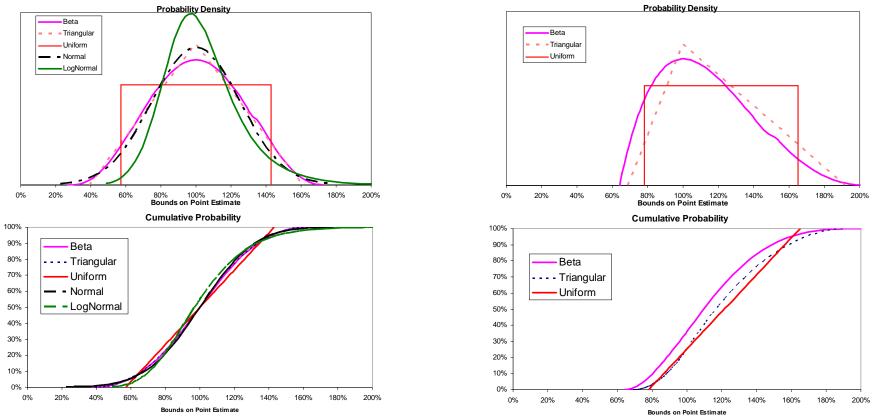
Decision Required: Define what should be addressed in a <u>risk analysis</u> (vs. sensitivity analysis). (NASA Tenet 5.)


Step 2.a: Cost Estimating Risk: Picking a Distribution Shape and Bounds

Objective Distribution Selection

- OLS CERs produce the "**mean**" (also the mode/median), error is **normally** distributed.
- Log Space OLS CERs produce the "median", error is log-normal in unit space.
- MUPE CERs approximates the "**mean**", where the error is **normally** distributed.

Subjective Distribution Selection

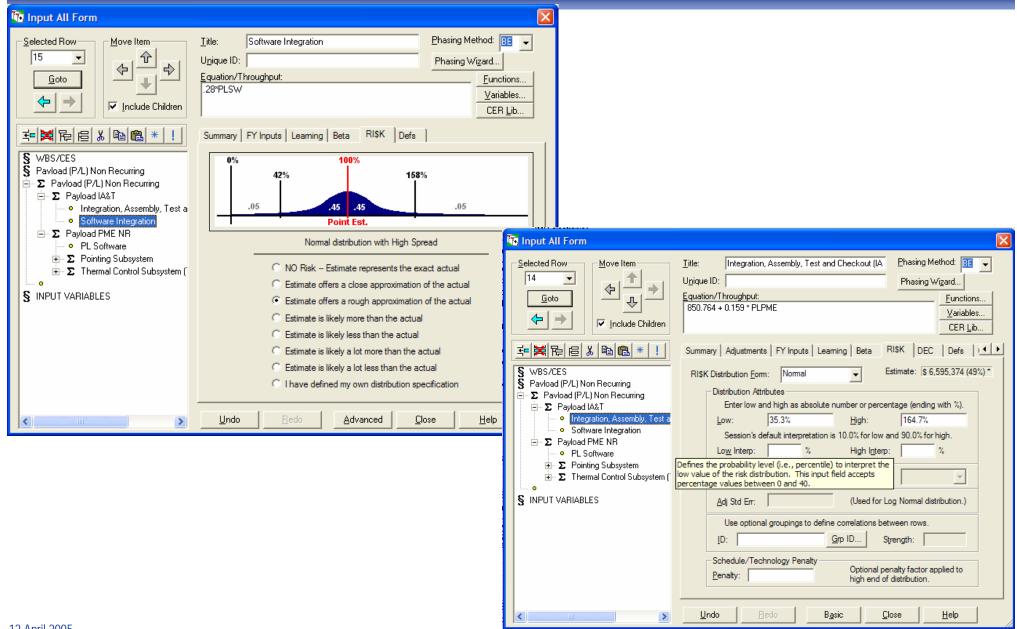

- Analysts will often declare that risk will be nonsymmetrical about the CER result.
- Risk on non-parametric CERs (analogy, buildup, through-puts) are almost always subjective.
- Log-normal, weibull, or beta are popular to avoid a sharp peakness around the mode with at least some probability of a large overrun.
- Bounds
 - Statistical analysis (objective)
 - Expert Opinion (subjective)

Suggestion (NASA Tenet 6):

- Publish the objective distribution shape for each regression technique.
- Define how to interpret the CER (mean or median).
- Provide guidance on what to pick if there is a basis to depart from the objective shapes.

Step 2.a: "Standard" Distribution Shapes and Bounds

Plots compare different distribution shapes based on similar dispersion (CoV)


Suggestion:

- Publish "standard" distribution shapes and bounds.
- Develop tables for different distribution shapes by commodity. (Support for NASA Tenet 6)

CoV – Coefficient of Variation = standard deviation/mean

For symmetric distributions: standard deviation/point estimate

Step 2.a: Use Basic or Advanced Wizards to set Shapes and Bounds

TECOLOTE RESEARCH, INC.

Step 2a: Some Potential Display Standards

WBS/CES Description	Unique ID	BASELINE	Equation / Throughput	Distributi on Form	Spread	LogNor mal	Low or Low %	High or High %
Pavload (P/L) Non Recurring	*Payload	\$ 42,071 (36%) *			Low			
Payload IA&T		\$ 7,641 (43%) *			Medium)		
Integration, Assembly, Test ar		\$ 6,595 (44%) *	850.764 + 0.159 × PLPME	Normal	High		35.3%	164.7%
Software Integration		\$ 1,046 (40%) *	.28*PLSW	Normal	Low			
Payload PME NR	PLPME	\$ 34,430 (35%) *						
PL Software	PLSW	\$ 3,735 (38%) *	SWPPM\$*(0.682+0.00006*Loc^1.32)	LogNormal		.25		
Pointing Subsystem		\$ 25,480 (36%) ×		Beta	- B			
Scan Mirror		\$ 1,249 (45%) ×	70.215 * ScanMirrorStrWt^0.830	LogNormal		og Normal	4%	162.6%
Gimbal		\$ 19,041 (36%) ×		None Normal	- N - N	one ormal		
Gimbal Structure		\$ 3,257 (45%) ×	70.215 * GimbalStrWt^0.830	Triangular		riangular	3%	161%
Motor Drive Electronics		\$ 892 (46%) ×	416.033+23.754*MotorDrvPcdWt	Uniform	- U	niform	1%	174.9%
LOS Computer		\$ 7,785 (42%) ×	256.878*LosCompDeWt	lWabull	- W	/eibull	J.7%	194.3%
IMU electronics		\$ 7,108 (42%) ×	256.878*IMUElecDeWt	Normal			5%	195%
Payload Reference Bench		\$ 5,190 (45%) ×	70.215 * BenchStrWt^0.830	Normal			40.6%	159.4%
Thermal Control Subsystem (T		\$ 5,215 (44%) ×						
Active		\$ 2,631 (45%) ×	205.155*TCSActiveThWt^0.635	Normal			35.8%	164.2%
Passive		\$ 2,584 (45%) *	205.155*TCPassThWt^0.635	Normal			35.7%	164.3%

Point estimate reflects "median" for lognormal, "mode" for all others.

- Right click to choose distribution and "default" spread/skew
- Permit dispersion to be specified such that distributions scale with sensitivity analysis....ie bounds that are a % of the point estimate, log SE for log-normal or CoV

Bracketed numbers in Baseline column reports point estimate confidence level 12 April 2005

Step 2.b: Configuration Risk

- Focus is now on the cost drivers (risk or sensitivity analysis?)
- Frequent sources of cost risk: learning slope, lines of code count, weight, composite labor rates, etc. assumptions
- Modeling considerations:
 - Do CER inputs represent design goals or include allowable margin?
 - Do CER inputs represent the mode/mean/median (normal error) or median (log-normal error) or some other percentile value?
 - Are only discrete sets of CER inputs permissible (i.e. is it inappropriate to model them with continuous risk distributions)?
 - Can CER inputs be functionally linked? For instance, can airframe weight be estimated from the engine weight?

Suggestion: NAFCOM permits analysts to assign distributions to the inputs. Publish "default" input variable interpretation, distribution shapes, and bounds based upon commodity type.

Step 2.c: Schedule/Technical Considerations

- Estimating methods capture some "nominal" schedule/technical cost impact (contributes to regression error term?).
 - Compare the project you are estimating to the CER source data.
 - Realistically assess the degree to which the schedule and technical considerations compare to the CER source.
- CERs, estimating methods, analogy and expert opinion estimating processes are influenced by past, real projects.
- Difficult to isolate <u>schedule from technical</u> cost impacts. Many approaches assess the impact together.
- Subjective assessment.

Decision Required:

Develop a default method for adjusting risk distributions to capture schedule and technical considerations:

- Parametric approach penalty factor, additional distribution, etc
- Employ schedule and EVM experts to explicitly model the schedule risk (NASA Tenet 10).

Step 2.d Review for Consistency

WBS/CES Description	Unique ID	BASELINE	Equation / Throughput	Distributi on Form	Spread	LogNor mal		High or High %
Pavload (P/L) Non Recurring	*Payload	\$ 42,071,316 (43%) *						
Payload IA&T	,	\$ 7,641,056 (48%) *						
Integration, Assembly, Test an		\$ 6,595,374 (48%) *	850.764 + 0.159 × PLPME	Normal			35.3%	164.7%
Software Integration		\$ 1,045,682 (51%) *	.28*PLSW	Normal	Low			
Payload PME NR	PLPME	\$ 34,430,260 (42%) ×						
PL Software	PLSW	\$ 3,734,580 (50%) *	SWPPM\$*(0.682+0.00006*Loc^1.32)	LogNormal		.25		
Pointing Subsystem		\$ 25,480,382 (42%) *						
Scan Mirror		\$ 1,248,665 (49%) *	70.215 * ScanMirrorStrWt^0.830	Normal			37.4%	162.6%
Gimbal		\$ 19,041,374 (42%) *						
Gimbal Structure		\$ 3,256,640 (49%) *	70.215 * GimbalStrWt^0.830	Normal			39%	161%
Motor Drive Electronics		\$ 892,443 (48%) ×	416.033+23.754*MotorDrvPcdWt	Normal			24.1%	174.9%
LOS Computer		\$ 7,784,607 (45%) *	256.878*LosCompDeWt	Normal			5.7%	194.3%
IMU electronics		\$ 7,107,684 (45%) *	256.878*IMUElecDeWt	Normal			5%	195%
Payload Reference Bench		\$ 5,190,344 (49%) ×	70.215 * BenchStrWt^0.830	Normal			40.6%	159.4%
Thermal Control Subsystem (T		\$ 5,215,297 (49%) ×						
Active		\$ 2,630,971 (49%) *	205.155*TCSActiveThWt^0.635	Normal			35.8%	164.2%
Passive (Risk by bounds)		\$ 2,584,326 (50%) *	205.155*TCPassThWt^0.635	Normal			60%	140%
Passive (Risk by CoV)		\$ 2,584,326 (50%) *	205.155*TCPassThWt^0.635	Normal	.3121			

Ž	Both give same answer	Point Estimate	Mean	Std Dev	CoV	5.0% Level	10.0% Level	50.0% Level	90.0% Level	95.0% Level
	Passive (Risk by bounds)	\$ 2,584,326 (50%)	\$ 2,586,628	\$ 803,312	0.3106	\$1,263,791	\$1,553,904	\$ 2,585,075	\$3,618,312	\$ 3,911,289
!	Passive (Risk by CoV)	\$ 2,584,326 (50%)	\$ 2,586,627	\$ 803,258	0.3105	\$ 1,263,898	\$1,554,177	\$ 2,585,161	\$ 3,618,310	\$ 3,911,401

Bounds expressed as % of point estimate <u>or CoV</u> (unitless):

- Scale with changes to the point estimate
- Provide a consistent basis for comparison

Step 3a: Run the Simulation

Simulation tool results are influenced by:

- Interpretation of point estimate
- Truncation assumption (do you allow cost, weight, etc risk to go negative?)
- Number of iterations
- If using Latin Hypercube [LHC], the number of partitions
- Random seed (impossible to be consistent between tools. Some tools at least provides for consistency across different machines and different versions)

When the above assumptions are consistent (as far as possible), Crystal Ball, @Risk, ACE and FRisk all produce similar results.

Decision Required:

- Identify acceptable risk simulation tools
- Provide guidance on how they should be applied
- Periodically publish "common errors" as new versions are released

Step 3b: Correlation

- <u>Measure</u> the correlation <u>already present</u> due to modeling relationships to determine if correlation needs to be adjusted
- Modeling considerations often overlooked when trying to assess the correlation <u>already present</u> in the cost model
 - Functional relationships between the input variables
 - Functional relationships between WBS elements
 - More than one CER sharing same risk-adjusted input variable. (example: same risk adjusted learning slope variable driving more than one WBS element)
 - Simulation tool bias (i.e. how random seeds are generated).
- Input variable functional relationships can be simulated using correlation (i.e.: cause structure weight to "move with" payload weight)

Measure Correlation Present in The Cost Model

	WBS/CES	Row 14: Integr ation,	Row 15: Softw	Row 17: PL Softw	Row 19: Scan Mirror	Ro w 21: Gimba I	Row 22: Motor Drive	Row 23: LOS Comput	Row 24: IMU	Ro w 25: Payloa d	Row 27: Active	Row 28: Passiv
14	Integration, Assembly, Tes	tan 1.00	0.07	0.08	0.05	0.11	0.04	0.24	0.23	0.16	0.03	0.08
15	Software Integration		1.00	0.90	0.02	0.04	-0.07	-0.01	0.00	0.00	-0.03	0.01
17	PL Software			1.00	0.01	0.01	-0.03	0.00	-0.01	-0.00	-0.03	0.00
19	Scan Mirror				1.00	-0.02	0.01	0.05	0.03	0.03	0.02	-0.03
21	Gimbal Structure					1.00	0.01	0.01	-0.01	0.03	0.04	-0.03
22	Motor Drive Electronics							-0.02	0.10	-0.01	0.03	-0.06
23	LOS Computer	Point						1.00	0.02	0.04	-0.08	0.02
24	IMU electronics	Estimate	、 I	Mean	Std I	Dev 📗	CoV		1.00	-0.00	-0.03	-0.05
25	Payload Reference Ben	Esuindu	-							1.00	0.00	-0.04
27	Active										1.00	-0.00
28	Passive	\$ 42,071 (2	29%) 3	\$ 48,673	3 \$10),826	0.2	2				1.00

Pearson Product moment correlation measured by capturing results from every iteration (Excel CORREL function can be used to validate)

		WBS/CES	Row 14: Integr ation,	Row 15: Softw are	Row 17: PL Softw	Row 19: Scan Mirror	Ro w 21: Gimba I	Row 22: Motor Drive	Row 23: LOS Comp	Row 24: IMU	Row 25: Paylo Pad	Row 27: Active	Row 28: Passiv
1	4	Integration, Assembly, Test and	1.00	0.38	0.31	0.32	0.35	0.32	0.47	0.45	0.38	0.35	0.35
1	5	Software Integration		1.00	0.91	0.23	0.24	0.23	0.26	0.24	0.24	0.26	0.25
1	7	PL Software			1.00	0.18	0.20	0.18	0.20	0.19	0.19	0.20	0.20
1	9	Scan Mirror				1.00	0.20	0.21	0.23	0.22	0.20	0.22	0.20
2	21	Gimbal Structure					1.00	0.20	0.23	0.22	0.21	0.22	0.20
2	22	Motor Drive Electronics						1.00	0.23	0.21	0.22	0.22	0.21
2	23	LOS Computer							1.00	0.22	0.23	0.22	0.22
2	24	IMU electronics	Poi	Point Estimate		n	Std	CoV		1.00	0.23	0.23	0.22
2	25	Payload Reference Bench	Estim				Dev				1.00	0.22	0.23
2	27	Active										1.00	0.23
2	28	Passive	\$ 42.07	1 (36%)	\$ 48.	955 3	\$ 15,793	3 0.3	17				1.00

Define intention when "injecting" correlation.

Correlation after layering an additional 20% across all elements

RESEARCH, INC. Need for Correlation Wizard

14 Integration, Assembly, Test \$ 6,595 (44%) * .4472 1.000 0.200 0.200 0 15 Software Integration \$ 1.046 (40%) * .4472 1.000 0.200 0 17 PL Software \$ 3,735 (38%) * .4472 1.000 1.000 0	19 21 22 23 24 2 .200 0.200 0.200 0.200 0.200 0.200 .200 0.200 0.200 0.200 0.200 0.200 .200 0.200 0.200 0.200 0.200 0.200 .200 0.200 0.200 0.200 0.200 0.200	Ability to layer add correlation across or cost driver eler blend of both)	s selected WBS nents (or a
19 Scan Mirror \$ 1,249 (45%) * .4472 1 21 Gimbal Structure \$ 3,257 (45%) * .4472 1 22 Motor Drive Electronics \$ 892 (46%) * .4472 1 23 LOS Computer \$ 7,785 (42%) * .4472 1 24 IMU electronics \$ 7,108 (42%) * .4472 1 25 Payload Reference Bench \$ 5,190 (45%) * .4472 1 27 Active \$ 2,631 (45%) * .4472 1 28 Passive \$ 2,584 (45%) * .4472 1	1.000 RISK Grouping and Corr Selected Grouping Group ID: MCR Alter the assigned strengths to - Enter a "D" for a row's strength	New Delete produce the desired correlation matrix. h to define it as the dominant item in the group. hatrix does not take into account functional correlations.	In this example, pair wise correlations are entered based relative to Software. All other cross correlations are estimated by ACE. Some analysts want ability to "tweak" each cross correlation.
Short cut used by ACE simplified the entry effort and speeds the simulation. However many wo like to have complete control of every element. To date, ACE Government sponsors are not motivated to fund this ability.	UID /er Decisions Re	380.0000 (20%) * 0.70 1.000 0.490 9.490 92.0000 (20%) * 0.70 1.000 0.490 76.0000 (39%) * 0.70 1.000 0.490 18.0000 (50%) * 0.60 1.000 1.000 18.0000 (20%) * 0.70 1.000 1.000 58.0000 (20%) * 0.70 1.000 1.000 22.0000 (20%) * 0.70 1.000 1.000 20.0000 (50%) * 0.80 1.000 1.000 230.0000 (19%) * D 1.000 1.000 40000 (19%) * D 1.000 1.000 4000 (19%) * D 1.000 1.000 4000 (19%) * <	ion should be applied.
motivated to fund this abilityb are not opposed.		u should allow the user to " tu	

Step 4: View and Interpret Results

WBS/CES	Point Estimate	Mean	Std Dev	CoV	5.0% Level	10.0% Level	50.0% Level	90.0% Level	95.0% Level
Pavload (P/L) Non Recurring	\$ 42,071 (35%)	\$ 49,068	\$ 17,493	0.36	\$ 22,111	\$ 26,437	\$ 47,830	\$ 70,960	\$ 78,692
Payload IA&T	\$ 7,641 (43%)	\$ 9,350	\$ 5,372	0.57	\$ 2,241	\$ 3,250	\$ 8,534	\$ 16,434	\$18,946
Integration, Assembly, Test and	\$ 6,595 (44%)	\$ 8,126	\$ 5,113	0.63	\$ 1,325	\$ 2,316	\$ 7,339	\$ 15,016	\$17,155
Software Integration	\$ 1,046 (41%)	\$ 1,224	\$ 478	0.39	\$ 601	\$ 708	\$ 1,143	\$ 1,841	\$ 2,095
Payload PME NR	\$ 34,430 (35%)	\$ 39,718	\$ 12,975	0.33	\$ 18,868	\$ 22,420	\$ 39,297	\$ 56,580	\$ 61,649
PL Software	\$ 3,735 (38%)	\$ 4,317	\$ 1,371	0.32	\$ 2,457	\$ 2,726	\$ 4,161	\$ 6,061	\$ 6,935
Pointing Subsystem	\$ 25,480 (37%)	\$ 29,764	\$ 11,158	0.37	\$ 12,340	\$15,083	\$ 29,528	\$ 44,450	\$ 49,257

Risk analysis will give context to the point estimate

- CoV (Stdev/Mean), confidence of the point estimate (PEcI) and quartile range are useful measures of the overall risk in the cost model (*Tenet 9*).
- Observations in DoD Estimates:
 - Estimates rich in parametric CERs: 15%<CoV<45%, and 5%<PEcl<30%
 - Estimates rich in build-up methods: 5%<CoV<15%, and 30%<PEcl<45%

Suggestion: Identify reasonable, commodity-based metrics the analyst can use to assess the completeness and possibly the quality of the risk analysis as it is being developed. **NASA has done so with the CRL concept.**

Step 5: Allocate Risk

Confidence level results do not add

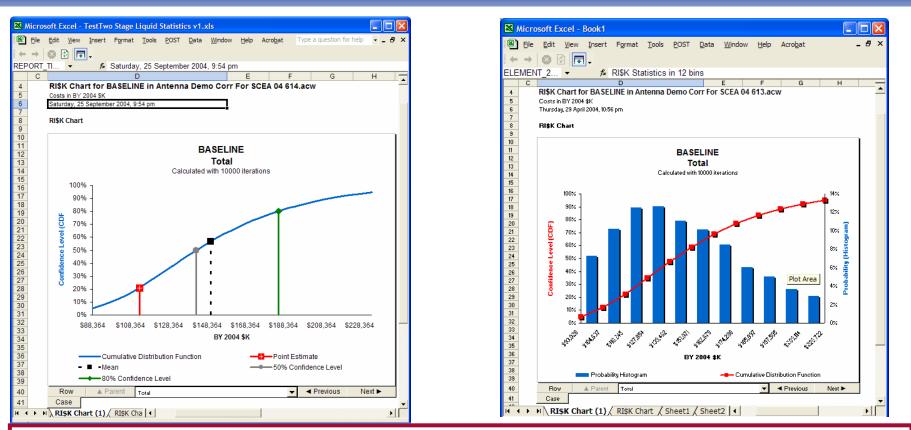
- Mathematicians are quite happy with this result, budget folks are not.
- Results must:
 - Be phased in both BY (constant year) and TY\$ (real dollars?)
 - Add up
- Selection of level from which to allocate risk has a significant impact on total
- Many issues must be resolved to define a phased, risk allocation method that yields consistent BY and TY results
- Problem is very much exacerbated if policy requires some elements to be at one confidence level (i.e. 80%) and others at another (i.e. 50%)
- Phasing assumptions will have <u>significant impact</u> on TY risk results.

Decision Required:

- Choose a "default" risk allocation approach, including how the cost risk dollars should be phased along with acceptable alternatives
- Define how to deal with elements that are at different CLs
- Cost models should be flexible enough to phase the risk dollars consistent with the program managers risk mitigation plans

Consequence of an Allocated Risk Report

	<mark>6.1 - [NASA USCM7 Simple</mark> E Edit Work <u>s</u> creen <u>C</u> alc <u>T</u> ools			Phased Cost	ts (FY2003 s	SK, Time Ph		×
		<u></u>	7-15					
								_
				I				
	Cost Element	Approp	Total	FY 2005	FY 2006	FY 2007	FY 2008	—
2	* Base Year of Calculation		2003					[
3	* Time of Calculation		09:26:17					
	* Date of Calculation		20Jul2004					
5	* System Inflation Table for Calcula		04, 29/APR/2004					
6	* Risk Iterations		10000					
7	* Risk Calculation Confidence Leve		70					
8	* Risk Allocation		2 WBS Elements>					
9	* Time ACE Session Last Saved		23:51:26					
10	* Date ACE Session Last Saved		19Jul2004					Ī
11								
12	Pavload (P/L) Non Recurring	SFCD	\$ 56,873 (~71%)	\$ 37,152	\$ 10,449	\$ 8,849	\$ 422	
13	Payload IA&T	SFCDC	\$ 11,175 (70%)		\$ 4,537	\$6,331	\$ 307	-
14	Integration, Assembly, Test ar	SFCDC	\$ 9,795 (70%)		\$ 3,977	\$ 5,543	\$ 269	
15	Software Integration	SFCDC	\$ 1,381 (69%)		\$ 561	\$ 782	\$ 38	
16	Payload PME NR	SFCDC	\$ 45,697 (70%)	\$ 37,152	\$ 5,912	\$ 2,518	\$ 115	
17	PL Software	SFCDC	\$ 4,755 (68%)	\$ 2,495	\$ 2,260			
18	Pointing Subsystem	SFCDC	\$ 34,372 (68%)	\$ 34,372				
19	Scan Mirror	SFCDC	\$ 1,612 (66%)	\$ 1,612				Ĩ
20	Gimbal	SFCDC	\$ 26,161 (66%)	\$ 26,161				
21	Gimbal Structure	SFCDC	\$ 4,040 (63%)	\$ 4,040				[
22	Motor Drive Electronics	SFCDC	\$ 1,125 (63%)	\$ 1,125				[
23	LOS Computer	SFCDC	\$ 10,963 (63%)	\$ 10,963				
24	IMU electronics	SFCDC	\$ 10,033 (64%)	\$ 10,033				
25	Payload Reference Bench	SFCDC	\$ 6,599 (66%)	\$ 6,599				[
26	Thermal Control Subsystem (T	SFCDC	\$ 6,570 (68%)	\$ 285	\$ 3,652	\$ 2,518	\$ 115	
27	Active	SFCDC	\$ 3,325 (65%)	\$ 144	\$ 1,848	\$ 1,274	\$ 58	[
28	Passive	SFCDC	\$ 3,245 (65%)	\$ 141	\$ 1,804	\$ 1,244	\$ 57	
•							•	
Ready								


In this example, risk funds managed from the 2nd level (70%)

Total project dollars required are greater than 70% CL overall

All numbers "add"

Step 6: Charts and Tables

Decision Required:

- Identify the standard charts and their contents to be presented to management.
- Ensure consistent x and y-axis arrangements.
- Determine "if" a TY S-curve should be presented and if so, define the process to be used (Sep 04, Army funded such a study and a solution is at hand).

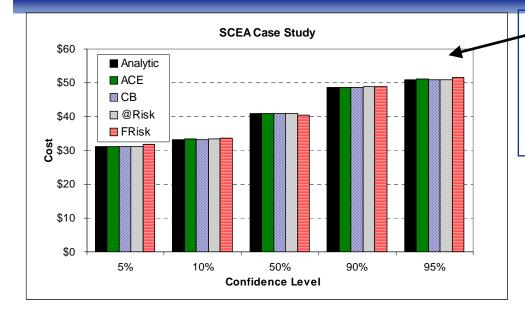
Benefits of Clear Guidance

- Default positions could establish minimum guidance & expectations for cost risk analysis not a cookbook
- No need to "over specify" the guidance
- Advanced analysts will still develop sophisticated models to deal with exceptional circumstances
- Establishing a "standard process" will:
 - Focus analyst's attention on "building" the risk adjusted estimate rather than determining "how" to build it
 - Enable more risk analysis practitioners to "do" cost risk analysis <u>with confidence</u>

Cost Risk Tools

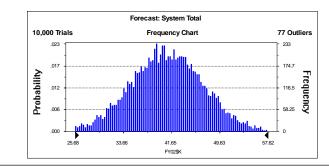
- What are the risk tools and which should I choose?
- Crystal Ball, @Risk, ACE RI\$K and FRisk <u>results</u> are compared.... Not their usability or suitability.
- **Two case studies examined (SCEA paper has three):**
 - Published, simple and analytically solved case study (SCEA paper June 04, Reference 5).
 - Second example is based upon a more "realistic" cost model that cannot be solved analytically (Reference 7).
- If handled properly, <u>all tools produce similar total</u> <u>cost distribution results</u> even when correlation is applied.

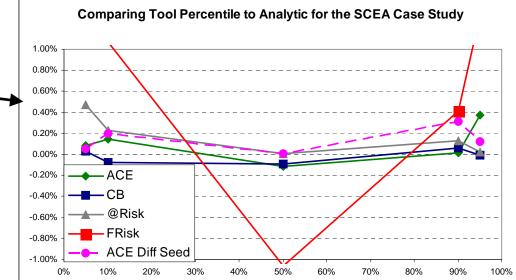
Case Study Page CE V – 80 SCEA Training Manual


WBS	Equation/ Throughput	Distrn	Lower	Point Estimate	Upper	Analytic Stdev	ACE Stdev	CB Stdev	@Risk Stdev
Electronic System						6.015	6.013	6.026	5.998
PMP	12.50	Normal		12.500		2.569	2.570	2.569	2.569
SEPM	0.5*PMP			6.250		1.285	1.285	1.284	1.285
Sys Test & Evaluation				4.706		0.811	0.811	0.812	0.809
Sys Test & Eval	0.3125*PMP			3.906		0.803	0.803	0.803	0.803
Management Reser	0.80	Uniform	0.6	0.800	1.0	0.115	0.116	0.115	0.115
Data and Tech Orders	0.1*PMP			1.250		0.257	0.257	0.257	0.257
Site Survey & Activatio	6.60	Tiangular	5.1	6.600	12.1	1.505	1.505	1.505	1.505
Initial Spares	0.1*PMP	_		1.250		0.257	0.257	0.257	0.257
System Warranty	1.10	Uniform	0.9	1.100	1.3	0.115	0.116	0.115	0.115
Early Prototype Phase	1.50	Triangular	1.0	1.500	2.4	0.290	0.290	0.290	0.290
Operations Supt	1.20	Triangular	0.9	1.200	1.6	0.143	0.143	0.143	0.143
System Training	0.25*PMP	J J		3.125		0.642	0.643	0.642	0.642

Combination of throughput and factor relationships

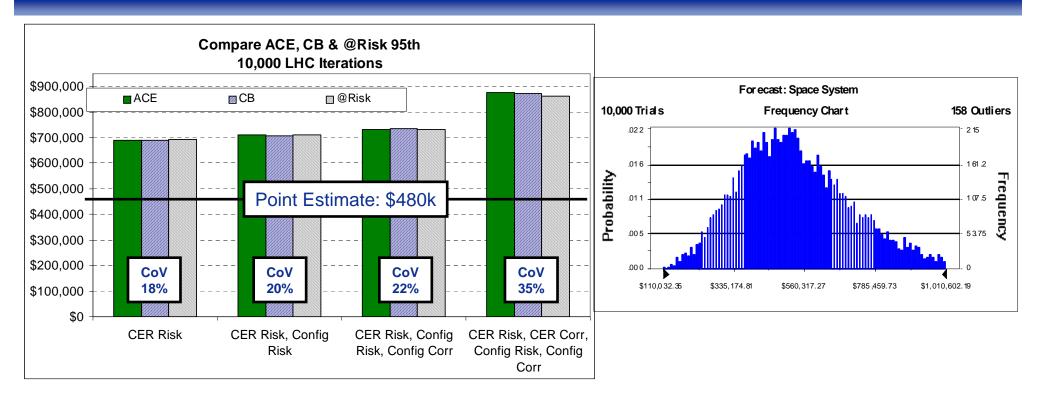
- No risk applied to the factors
- PMP drives about 70% of the model result, so 70% of the risk is modeled with a normal distribution making it reasonable that the total cost is likely to be normally distributed.
- Sys Test & Eval has an additive risk which is unusual in cost risk analysis. We generally assume the risk scales with the estimate.




All Tools Perform Well

• Use this scale if you wish to show there are in fact differences amongst the models.

 However, note that the scale is so magnified, that simply changing the initial seed value (ACE is shown, but all behave the same) noticeably changes the results! Use this scale if you wish to show that all models are not bad (FRisk is a little off because it assumes a log-normal distribution at the total level). Note that the simulation tool total result <u>does</u> appear "normal".



A "Realistic" Model

	В	C	D	E	H		К	M	N	0	P	Q	R	S	T	U
4												ations, L	atin Hype	r-Cube Con	_	
5									_	idard Dev			Mean			ith Perce
6	VBS/CES Description	Inique IC	Eqn	FY	Low	High	Risk	Simulation	_	ACE	ACE:CB	CB	ACE	ACE:CB	CB	ACE
7	Space System NR							\$480,484.0		\$188,446	0.44%	\$533,747	\$533,537	-0.04%	\$878,571	\$875,281
8	Program Management/Systems Engin		1.487*(PLNR+SCNR)^0.841	1992	46.80%	153.20%	1	\$78,844.4		\$50,417	0.35%	\$89,408	\$89,430	0.03%	\$184,204	\$184,262
9	Pavload (P/L) Non Recurring	PLNR						\$125,388.9		\$55,684	-2.81%	\$142,375	\$142,118	-0.18%	\$244,566	\$242,655
10	Payload IA&T							\$18,766.7		\$14,180	-2.45%	\$22,752	\$22,658	-0.41%	\$50,100	\$49,210
11	Integration, Assembly, Test and Ch	ieckout (IA T		1992	35.30%	164.70%	1	\$17,959.8	_	\$14,060			\$21,526			\$47,863
12	Software Integration		.28"PLSW	2001	80%	120%		\$806.9		\$399			\$1,132			\$1,882
13	Payload PME NR	PLPME						\$106,622.2		\$44,542	-2.75%	\$119,623	\$119,461	-0.14%	\$202,048	\$200,056
14	Optical Telescope Assembly (OTA	4		1000	41.000	150.1017		\$9,517.6		\$3,975	0.75%	\$9,896	\$9,882	-0.14%	\$16,816	\$16,872
15 16	Structure		70.215 * OTASTRWT*0.830 256.664*OTAELECTR*0.761	1992 1992	41.90%	158.10% 185.40%		\$6,215.4 \$3,302.2	_	\$2,985			\$6,295			\$11,655 \$7,070
17	Electrical Rejeting Subgrates		206.664 UTAELEUTH 0.761	1992	14.60%	180.40%		\$3,302.2		\$2,039 \$9,063	2.45%	\$24,794	\$3,588 \$24,793	-0.01%	\$40.592	\$7,279 \$40.863
17	Pointing Subsystem Scan Mirror		70.215 * SCANMIRRORSTRWT*0.830	1992	37.40%	162.60%		\$22,007.1	+ - 1	\$3,063 \$565	-0.25%	\$24,734 \$1,144	\$24,733 \$1,145	-0.01%	\$40,532 \$2,162	\$40,863 \$2,154
	Scan Minior 70.210 SCANMINHORSTRWT 0.830 132 37.402 162.602 4 \$1,21.00 \$366															
_	20 Gimbal Structure 70.215 GIMBALSTRWT*0.830 1992 39% 161% 1 \$2,9															
	21 Motor Drive Electronics 416.033+23.754 MOTORDRVPCDWT 1992 25.10% 174.90%															
	22 LUS Computer 256.878 LUSCUMPTODE w1 1992 5.70% 194.30%															
23	IMU electronics		256 878"IMUPMATUDEVT		5%	195%		\$6.								
H 4		CB 🖉 🎯	RISK Correlations / USCM 7	@Ris	k 🔏 REI	PORT (4)/ (*	*	· CERs	s are	multipli	ed bv	risk c	listribut	tion	
	Microsoft Excel 4 USCM7	CED Diel	k, CER Corr, Config Risk, Config	a Cor	Crueta		liek Apri	M vle								
	MICLOSOIT EXCEL - 4 OSCM7	CER KIS	, CER COIT, COIIng Risk, Coiing	g Corr	Crysta	ibali Atr	азк Арго	74.815	assur	nptioi	ns (gre	en ce	lis)			
	🔄 File Edit View Insert F	ormat]	<u>T</u> ools <u>D</u> ata <u>W</u> indow <u>H</u> elp Acro	o <u>b</u> at												
								•	Forec	cast c	ells mu	ist driv	ve fun	ctional		
														0		
	U7 🔻 f 🗴 87	75281							relation	onshij	DS					
	X Y Z	AA	AB AC AD AE AF AG	AH	AI A	J AK	AL AM	I AN A								
									• Corre	lation	matrix	norm	nite Av	nlicit		
												pem		plicit		
									assur	mptioi	าร					
			άν.	<u>e</u>	ň			ů		a. 🙀	a Spa	i pace	, př	တို ဆို	space a	
				ы; Э	ayloadF aGimlN	Ť	τ̈́ρ Ϋ́ρ	PA SP	÷ č	Ω d	IAT 80	Ë 5	Į ě	ě ř	ě è	
	, j	alATC	aGimMDE aGimStr. aScanM aOTElec aOTStr.	GimLOSC	aGimIML	afpad	aSPAStru aFPA.Ana	aSPAPS SPADigSig	aTCSAo aPLSof	ATCSpace aTCSPass	aceStrMec aIATCSof	e ICSPas IceTCSAc	CeEPSPG	တို တို	aceADCSAI paceEPSPC	
					<u> </u>	<u> </u>						<u> </u>	<u> </u>	<u>, </u>	<u></u>	
	4 1 aPMSE 1.00		0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200		0.200 0.2		0.200 0.20			0.200 0.20					0.200 0.20	
	6 3 aSoftInt		1.000 0.200 0.200 0.200 0.200 0.200	0.200	0.200 0.2		0.200 0.20			0.200 0.20					0.200 0.20	
	7 4 aOTStru				0.200 0.2		0.200 0.20			0.200 0.20					0.200 0.20	
	8 5 aOTElec		1.000 0.200 0.200 0.200		0.200 0.2		0.200 0.20			0.200 0.20					0.200 0.20	
	9 6 aScanM		1.000 0.200 0.200				0.200 0.20			0.200 0.20					0.200 0.20	
	10 7 aGimStru		1.000 0.200	0.200	0.200 0.2	_	0.200 0.20			0.200 0.20					0.200 0.20	
	11 8 aGimMDE 12 9 aGimLOSC		1.000	0.200	0.200 0.2		0.200 0.20			0.200 0.20					0.200 0.20	
	13 10 aGimIMU		L	1.000	1.000 0.2		0.200 0.20			0.200 0.20					0.200 0.20	
			ADTOX Completions / USON 7 OD		10	اومجم امم	1200 0.20			0.200 0.20			200 0.200		0.200 0.20	
10 ۸ -		CB (@	RISK Correlations 🖌 USCM 7 @Ri	SK (I	KEPUKI	(4) / [4									P	20
τΖ Αβ	ril 2005															33

USCM 7 Comparison

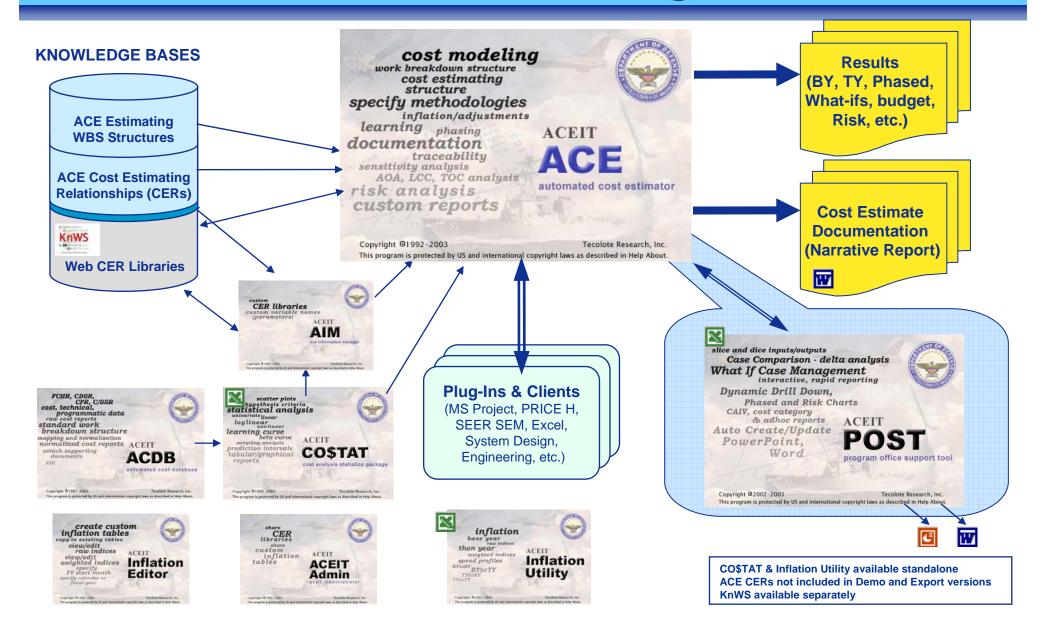
- More than 30 linear, non-linear, throughput CERs and 30 input values
- Compared total cost result at the 95th percentile based upon a systematic layering of correlation assumptions
- All three tools produce remarkably similar results in each scenario.

Comparing Risk Tools

If you are consistent with:

- How to interpret the point estimate
- Number of iterations.
- If using Latin Hypercube [LHC], the number of partitions.
- Inflation, learning, and other modeled adjustments.
- How functional correlations are modeled
- Distribution shape and bound assumptions.
- Truncation assumptions.

If you follow the tool developer's recommendation for inputting correlation:


Crystal Ball, @Risk and ACE will give results well within the simulation tool error band.

Backup Slides

EXAMPLE ACEIT Is Structured to Automate TECOLOTE ACEIT Is Structured to Automate the Estimating Environment

Unintentional Correlation?

	WBS/CES Description	BASELINE	Uniqu e ID	Equation / Throughput	Curve Slope	Distributio n Form	Low or Low %		Spread	Skew
44	Procurement	\$ 56,633 (26%) ×	Proc\$							
45	Manufacturing	\$ 41,543 (30%) *	Manuf\$							
46	Non Recurring	\$ 506 (23%) ×		500		Uniform	80%	200%		
47	Recurring	\$ 41,037 (30%) *				1				
48	Missile	\$ 23,607 (37%) *		64.59 * Wgt ^ 0.7649	AntSlp	LogNormal	87.29%	114.56%		
49	Antenna	\$ 15,156 (29%) ×	Ant\$	0.3808 * Aper ^ 1.244	AntSlp	LogNormal	85.5%	116.9%		
50	Integration	\$ 2,273 (26%) ×		0.15*Ant\$	7	Beta			Medium	Right
51	SE/PM	\$ 10,024 (37%) *		0.2413 * Manar\$		Normal	54.2%	145.8%		
52	Other	\$ 5,065 (10%) *		5000		Triangular	100%	200%		
57										
59	Antenna Lrning Slope	90.0 (37%) ×	AntSlp	90		Uniform	85	100		

Same risk adjusted slope variable for missile/antenna.

	WBS/CES	Row 37: Total	Row 44: Procu	Row 45: Manu	Row 47: Recu	Row 48: Missil	Row 49: Anten	Row 50: Integr	Row 51: SE/P M	80.0% Level
37	Total	1.00	0.90	0.90	0.90	0.68	0.88	0.79	0.68	\$ 177,979.07
44	Procurement		1.00	0.97	0.97	0.83	0.88	0.79	0.80	\$ 91,714.58
45	Manufacturing			1.00	1.00	0.85	0.91	0.81	0.66	\$ 67,666.46
47	Recurrina				1.00	0.85	0.91	0.81	0.66	\$ 66,884.04
48	Missile					1.00	0.56	0.48	0.56	\$ 35,638.72
49	Antenna						1.00	0.87	0.60	\$ 28,166.22
50	Integration							1.00	0.54	\$ 4,798.61
51	SE/PM								1.00	\$ 17,645.23

Much worry over possible <u>underestimated</u> correlation

 No apparent concern over
 possible <u>excessive</u> correlation

Removing <u>Unintentional</u> Correlation

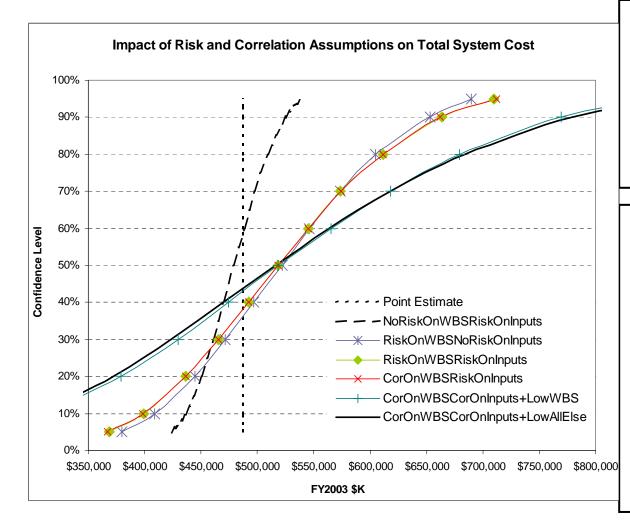
	WBS/CES Description	BASELINE	Uniqu e ID	Equation / Throughput	Curve Slope	Distributio n Form	Low or Low %	High or High %	Spread	Skew
44	Procurement	\$ 56,633 (18%) ×	Proc\$							
45	Manufacturing	\$ 41,543 (21%) ×	Manuf\$							
46	Non Recurring	\$ 506 (23%) ×		500		Uniform	80%	200%		
47	Recurring	\$ 41,037 (22%) ×								
48	Missile	\$ 23,607 (37%) ×		64.59 * Wgt ^ 0.7649	MissSlp	LogNormal	87.29%	114.56%		
49	Antenna	\$ 15,156 (29%) ×	Ant\$	0.3808 * Aper ^ 1.244	AntSlp	LogNormal	85.5%	116.9%		
50	Integration	\$ 2,273 (26%) ×		0.15*Ant\$		Beta			Medium	Right
51	SE/PM	\$ 10,024 (34%) ×		0.2413 * Manuf\$		Normal	54.2%	145.8%		
52	Other	\$ 5,065 (10%) ×		5000		Triangular	100%	200%		
57				٦ /						
59	Antenna Lrning Slope	90.0 (37%) *	AntSlp	90		Uniform	85	100		
60	Missile Lrning Slope	90.0 (37%) *	MissSlp	90		Uniform	85	100		
	-							/	A (

Need separate slope variable for the missile.

	WBS/CES	Ro w 37: Total	Ro w 44: Procu	Row 45: Manuf	Row 47: Recur	Row 48: Missil	Row 49: Anten	Row 50: Integr	Row 51: SE/P M	80.0% Level
37	Total	1.00	0.86	0.85	0.85	0.33	0.82	0.73	0.61	\$173,903.81
44	Procurement		1.00	0.96	0.96	0.59	0.75	0.68	0.77	\$ 87,848.49
45	Manufacturing			1.00	1.00	0.62	0.78	0.71	0.58	\$ 64,449.32
47	Recurring				1.00	0.62	0.78	0.71	0.58	\$ 63,686.82
48	Missile					1.00	0.00	-0.01	0.36	\$ 35,457.46
49	Antenna						1.00	0.87	0.46	\$ 28,166.22
50	Integration							1.00	0.42	\$ 4,798.61
51	SE/PM								1.00	\$17,298.13

- Missile/ Antenna correlation now 0.
- Rec cost is now 5% less.

Decisions Required:


Define Correlation Strength

- Strong (.9?)
- Moderate (.6?)

• Weak (.2?)

When to apply?

TECOLOTE RESEARCH, INC. Impact on on Total Cost by Layering Risk Assumptions

In this model, the impact of correlating the Gimbal elements is insignificant. Applying 20% across all remaining WBS elements and inputs increases the cost result at 80% by 12%. The CoV of the final result is 35%.

Applying risk to the CERs and inputs in ACE, before layering correlation, captures most of the risk. Forcing an additional 20% correlation across all WBS elements (other than the Gimbal) does have a significant impact in this model.

Although the CoV of the final result is 35%, it might be excessive. To force even a 20% correlation across all elements is contrary to correlation studies on some datasets.