

Bridging Engineering and Economics Since 1973

Examination of Functional Correlation And Its Impacts On Risk Analysis Alfred Smith Joint ISPA/SCEA Conference June 2007

Los Angeles
Washington, D.C.
Boston
Chantilly
Huntsville
Dayton
Santa Barbara
Albuquerque
Colorado Springs
Columbus
Ft. Meade
Ft. Monmouth
Montgomery
Ogden
Patuxent River
Pensacola
San Diego
Charleston
Cleveland
Denver
New Orleans
Oklahoma City
Silver Spring
Tacoma
Warner Robins AFB
Vandenberg AFB

- Define "Applied Correlation"
- Using a simulation tool to replicate published results of applied correlation impact on throughputs
- A new twist on a well know chart: potential Std Dev underestimated if correlation left at zero
- Define "Functional Correlation"
- Comparing correlation applied to throughputs vs functionally correlated models
- Conclusions

Note: all simulations performed at 10,000 iterations, Latin Hypercube and all distributions truncated at 0

Defining Applied Correlation

- The correlation coefficient indicates the strength and direction (+ve or -ve) of a linear association between two random variables
- Simulation tools allow you to "apply" correlation between two or more uncertainty distributions
- Example illustrates 0.25 correlation "applied" to otherwise independent random variables
- Note that this model sums constant point estimates, with different distributions but with the same Std Dev.

	Point					Item 1	Item 2	Item 3	Item 4	Item 5
WBS Element	Estimate	Stdev/PE	Skew	Alpha	Beta	LN	Norm	Tri	Beta	Unif
Item 1 LN	100.0 (50%)	0.25				1.00	0.25	0.25	0.25	0.25
Item 2 Norm	100.0 (50%)	0.25					1.00	0.25	0.25	0.25
Item 3 Tri	100.0 (50%)	0.25	Center					1.00	0.25	0.25
Item 4 Beta	100.0 (50%)	0.25		0.5	0.5				1.00	0.25
Item 5 Unif	100.0 (50%)	0.25	Center							1.00

Well Known Correlation Impact on Sum of Throughputs

From: *Why Correlation Matters in Cost Estimating*; Dr. Stephen A. Book; The Aerospace Corporation; 32nd DODCAS; 2-5 February 1999

TECOLOTE RESEARCH, INC. Point Estimates and Various Std Dev

	Point Estimate	Mode	Mean	Low	High or Std Dev	Alpha or Shape	Beta or Scale
Total 5 Elements	63,282.65		77,967.88				
Item 1 LN	4,192.86		4,540.46		1,886.78		
Item 2 Norm	<mark>9,401.51</mark>	9,401.51	9,401.51		2,350.38		
Item 3 Tri	6,678.31	6,678.31	8,681.80	4,674.82	14,692.28		
Item 4 Beta	12,809.19	12,809.19	13,724.13	8,234.48	21,958.60	2	3
Item 5 Unif	19,624.29	19,624.29	22,567.94	7,849.72	37,286.15		
Item 6 Weib	10,576.50	10,576.50	19,052.05			1.529808	2

- Bold elements used to define distributions
- Non bold mode, mean calculated from standard equations
- Weibull Shape value selected to cause a point estimate of 1 to be the mode. This distribution is multiplied by the model point estimate.

Variance Equations

Item 3 Tri	$\frac{(Max - Min)^2 + (Mode - Min)(Mode - Max)}{18}$						
Item 4 Beta	$\frac{(max-min)^2}{12}$						
Item 5 Unif	$\frac{\alpha \times \beta}{(\alpha + \beta)^2 \times (\alpha + \beta + 1)} \times (\max - \min)^2$						
ltem 6 Weib	$b\left(\Gamma(1+\frac{2}{\alpha})-\Gamma^2(1+\frac{1}{\alpha})\right)$						
	Theoretical ACE Std CB Std ACE/ CB/						

Corr = 0	CV	Theoretical	ACE Std	CB Std	ACE/	CB/	
Con = 0	5	StdDev	Dev	Dev	Theory	Theory	
Total 5 Elements	0.20	15,965.28	15,957.30	15,956.05	100.0%	99.9%	
Item 1 LN	0.42	1,886.78	1,888.39	1,887.51	100.1%	100.0%	
Item 2 Norm	0.25	2,350.38	2,351.29	2,350.65	100.0%	100.0%	
Item 3 Tri	0.25	2,164.02	2,164.34	2,164.12	100.0%	100.0%	
Item 4 Beta	0.20	2,744.83	2,745.34	2,744.94	100.0%	100.0%	
Item 5 Unif	0.38	8,497.57	8,498.00	8,498.00	100.0%	100.0%	
Item 6 Weib	0.67	12,703.55	12,696.81	12,702.51	99.9%	100.0%	

TECOLOTE RESEARCH, INC. Using Simulation Tools to Study Impact of Correlation on Throughputs

Total Cost Variance =
$$\sum_{k=1}^{n} \sigma_k^2 + 2 \sum_{k=2}^{n} \sum_{j=1}^{k-1} \rho_{jk} \sigma_j \sigma_k$$

Enter Override Here>	0.5
Simulation/Theory =	98.65%

Γ	Std Dev	Theroy Std Dev	Item 1 LN	tem 2 Norn	Item 3 Tri	ltem 4 Beta	Item 5 Unif	Item 6 LN	tem 7 Norn
	16,564.45	16,791.68	85.26	125.65	167.47	312.2	411.92	420.5	222.99
	85.26	Item 1 LN	1.000	0.500	0.500	0.500	0.500	0.500	0.500
	125.65	Item 2 Norm	0.500	1.000	0.500	0.500	0.500	0.500	0.500
	167.47	Item 3 Tri	0.500	0.500	1.000	0.500	0.500	0.500	0.500
	312.20	Item 4 Beta	0.500	0.500	0.500	1.000	0.500	0.500	0.500
	411.92	Item 5 Unif	0.500	0.500	0.500	0.500	1.000	0.500	0.500
	420.50	Item 6 LN	0.500	0.500	0.500	0.500	0.500	1.000	0.500
	222.99	Item 7 Norm	0.500	0.500	0.500	0.500	0.500	0.500	1.000
	117.95	Item 95 Unif	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	195.99	Item 96 LN	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	244.66	Item 97 Norm	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	149.04	Item 98 Tri	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	415.44	Item 99 Beta	0.500	0.500	0.500	0.500	0.500	0.500	0.500
	127.02	Item 100 Unif	0.500	0.500	0.500	0.500	0.500	0.500	0.500

Calculation demonstrates even 100 element model with a variety of distributions (lognormal, triangular, normal, beta, uniform, weibull) returns a total std dev that matched theory

Using Final Simulated Correlations

Enter Override Here>	
Simulation/Theory =	100.00%

		Item 1	Item 2	Item 3	Item 4	Item 98	Item 99	Item 100
Std Dev	Theroy Std Dev	LN	Norm	Tri	Beta	Tri	Beta	Unif
16,564.45	16,564.43	85.26	125.65	167.47	312.2	149.04	415.44	127.02
85.26	Item 1 LN	1.000	0.486	0.486	0.489	0.483	0.474	0.460
125.65	Item 2 Norm	0.486	1.000	0.499	0.505	0.494	0.502	0.489
167.47	Item 3 Tri	0.486	0.499	1.000	0.492	0.497	0.500	0.478
312.20	Item 4 Beta	0.489	0.505	0.492	1.000	0.497	0.498	0.482
411.92	Item 5 Unif	0.467	0.490	0.492	0.477	0.484	0.489	0.480
420.50	Item 6 LN	0.487	0.481	0.481	0.472	0.479	0.482	0.468
117.95	Item 95 Unif	0 474	0 485	0 480	0 476	0 484	0 479	0 483
195.99	Item 96 L N	0.482	0.489	0.484	0.488	0.488	0.479	0.469
244.66	Item 97 Norm	0.484	0.103	0.101	0.504	0.492	0.493	0.494
149.04	Item 98 Tri	0.483	0.001	0.001	0.001	1 000	0.489	0.496
415 44	Item 99 Beta	0 474	0.502	0.500	0.498	0.489	1 000	0.476
127.02	Item 100 Unif	0.460	0.302	0.300	0.490	0.405	0.476	1 000
121.02		0.400	0.409	0.470	0.402	0.490	0.470	1.000

If you capture the simulation iterations and measure the Pearson Product correlation actually manifested by the simulation and use that correlation matrix, the std dev returned by the tool exactly matches theory

Impact if Throughputs and Std Dev are not Fixed

- Suggests that defaults should be higher if you wish to protect against 50% underestimated
- For 10 elements, if you wanted to protect against 50% underestimated, you need to apply 0.45, not 0.35 (for 5 elements 40%, 0.65, not 0.45)

- Functional correlation is correlation induced into a model through the algebra of the model
- **Examples:**
 - Item 2 and 3 are functionally correlated through a common wgt variable
 - Item 2 and item 4 are functionally correlated through a factor relationship
 - Item 4 and 5 are functionally correlated through a common Item 2 variable

WBS	PE	с٧	Eq / Thruput	Form	Low	High
Total	1,482.2 (24%)	0.27				
Item 1	400.0 (36%)	0.40	400	Triangular	70%	180%
Item 2	338.6 (36%)	0.29	256.2+0.05682*Wgt^1.374	LogNormal		130%
Item 3	239.9 (35%)	0.47	30.15+1.049*Wgt	Normal		140%
Item 4	203.2 (43%)	0.62	.6*Item2	Normal		165%
Item 5	300.4 (43%)	0.66	3.5*(Item2+Item3)^0.7	LogNormal		180%
Weight	200.0 (24%)	0.31	200	Triangular	90%	180%

A Functionally Correlated Model

WBS	PE	CV	Eq / Thruput	Form	Low	High	No Uncertainty on Weight					
Total	1,482.2 (35%)	0.24					Item	Item 1	Item 2	Item 3	Item 4	Item 5
Item 1	400.00 (36%)	0.40	400	Triangular	70%	180%	Item 1	1.00	0.00	0.00	0.00	0.00
Item 2	338.64 (50%)	0.26	256.2+0.05682*Wgt^1.374	LogNormal		130%	Item 2		1.00	-0.01	0.44	0.18
Item 3	239.95 (50%)	0.38	30.15+1.049*Wgt	Normal		140%	Item 3			1.00	0.00	0.16
Item 4	203.18 (49%)	0.60	.6*Item2	Normal		165%	Item 4				1.00	0.10
Item 5	300.42 (50%)	0.64	3.5*(Item2+Item3)^0.7	LogNormal		180%	Item 5					1.00
Weight	200		200									

WBS	PE	с٧	Eq / Thruput	Form	Low	High	Uncertainty on Weight					
Total	1,482.2 (24%)	0.27					ltem	Item 1	Item 2	Item 3	Item 4	Item 5
Item 1	400.0 (36%)	0.40	400	Triangular	70%	180%	Item 1	1.00	0.00	0.00	0.00	0.00
Item 2	338.6 (36%)	0.29	256.2+0.05682*Wgt^1.374	LogNormal		130%	Item 2		1.00	0.26	0.48	0.24
Item 3	239.9 (35%)	0.47	30.15+1.049*Wgt	Normal		140%	Item 3			1.00	0.13	0.25
Item 4	203.2 (43%)	0.62	.6*Item2	Normal		165%	Item 4				1.00	0.14
Item 5	300.4 (43%)	0.66	3.5*(Item2+Item3)^0.7	LogNormal		180%	Item 5					1.00
Weight	200.0 (24%)	0.31	200	Triangular	90%	180%						

- Item 2 and 3, and Item 3 and 4 are not correlated when weight is "certain"
- Item 2 and 3 and Item 3 and 4 become "correlated" when weight variable (common to item 2 and 3) is made uncertain
- Note that CVs increase and item 2 and 5, 3 and 5 correlation increases

Simulation Tools Capture Functional Correlation

- Must ensure CERs are driven from forecasts!
- Applying correlation does have an impact on already functionally correlated items

Functional Correlation Affects the Mean!

- In this model, the mean of the estimate increases linearly with correlation (albeit by only a few percent)
- The mean of throughputs is NOT affected by correlation

Pointed out to the author by Erik Burgess as a result of a review of the AFCAA Cost Risk Handbook

TECOLOTE RESEARCH, INC.

Correlation Impact On Throughputs vs Functional

Tecolote Research, Inc.

Correlation Impact On Throughputs vs Functional

- Identical point estimate for throughputs and functional version
- Uncorrelated functional has greater variance than fully correlated throughput
 - Potential for underestimating is LESS (in <u>relative</u> terms) if model is functionally correlated
- Potential for underestimating is MORE (in <u>absolute</u> terms) if model is functionally correlated

Impact if Items Functionally Related and Std Devs are not Fixed

Tecolote Research, Inc.

In and Out of Trouble

Heading for Trouble

- Throughput (number) PE
 - May miss important relationship that functional correlation would normally capture
 - Simulate by applying correlation

Ignoring correlation

- Uncertainty distributions aren't enough
- Variance at total will be underestimated

Layering matrix atop Funtional

- Correlation may already exist due to functional relationship
- Assigning additional input coefficient will exaggerate impact of inputs
- Reusing input driver
 - Produces undesired "incidental" correlation due to common inputs
 - Increases variance at total

Escaping Trouble

Generate resulting correlations

• Run the model after defining distributions to find existing functional correlation

Study relationships

- Watch for unexplained FC a symptom of shared drivers
- Watch for low correlation among similar elements

Adjust input matrix

- Increase 0.0 to 0.25
- Increase correlations among technically related throughputs
- Adjust correlations between cost methods were there is evidence existing correlation is insufficient
- Repeat

- Simulation tools adequately capture the impact of correlation on both throughputs and functionally correlated models
- Functional correlation is correlation induced into a model through the algebra of the model
- Functional correlation affects the mean at the total level, correlation on throughputs does not
- Functional relationships can introduce unintended correlation (i.e. the same uncertain variable used across many cost methods)
- Functional correlation alone may establish a variance (with no applied correlation) that even fully correlated throughputs cannot achieve
- For 2 to 25 elements, defaults to capture underestimated variance when your model has varying throughputs and varying std dev (i.e. all the time) should be greater than previously published
- Build in functional relationships where ever you can!

- [1] Why Correlation Matters in Cost Estimating; Dr. Stephen A. Book; The Aerospace Corporation; 32nd DODCAS; 2-5 February 1999
- [2] Simulating Correlated Random Variables; Philip M. Lurie and Matthew S. Goldberg; Institute for Defense Analyses; 32nd DODCAS; 2-5 February 1999
- [3] 32. Impact Of Correlating CER Risk Distributions On A "Realistic" Cost Model; A Smith, Dr. Shu-Ping Hu; Tecolote Research; ISPA/SCEA Conference (Orlando) June 2003
- [4] Correlations in Cost Risk Analysis, Covert, R., SCEA Conference, Tysons Corner, VA, June 13-16, 2006
- [5] Cautionary Notes on Defining Parent-Level Correlations, Hu, Shu-Ping, 2006, White Paper, Tecolote Research