

Uncertainty Management in AoAs:

Case Study of an ACAT ID Program's Approach Plan in Using the ACEIT 7.3 Suite of Tools

Tomeka S. Williams
Senior Operations Research Analyst, Team Lead
Ground Combat & Support Vehicles

Tomeka.Williams.Civ@mail.mil
Office 703-697-1576

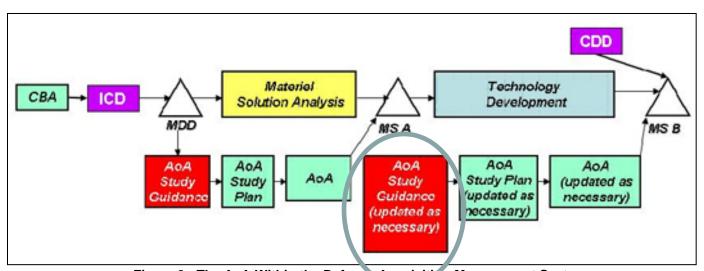
Overview

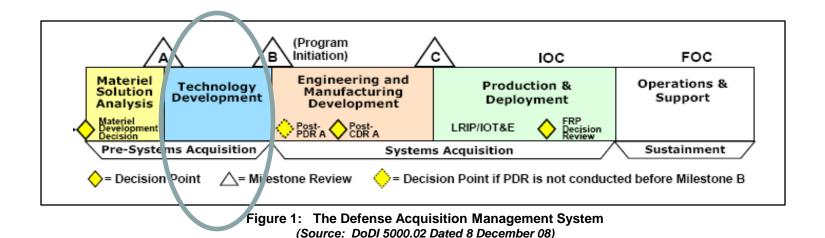
- Background
- Cost Analysis Policy
- AoA Purpose and Intent
- Areas for Uncertainty Considerations
- How to Conduct Uncertainty Analysis
- Uncertainty Management in ACEIT 7.3
- Questions

Background

❖ What is an AoA?

- ➤ A key element of the Defense acquisition process.
- Analyzes a spectrum of solutions to fill a set of identified capability gaps.
 - Each alternative is analyzed and rated not only based on its military utility but also its cost effectiveness.
- This is conducted in the Milestone-A timeframe before an acquisition program is established and updated at each major milestone.




Figure 2: The AoA Within the Defense Acquisition Management System (Source: Defense Acquisition Guidebook Dated 19 March 10)

Milestone-B Cost Analysis Policy

- Weapon Systems Acquisition Reform Act of 2009
- DoDI 5000.02 Revision (8 December 2008)
 - ➤ Mandatory Materiel Development Decision (MDD)
 - ➤ Milestone-B Independent Cost Estimates
 - ➤ Milestone-B Component Cost Estimates
 - Milestone-B Analyses of Alternatives (AoA)

AoA Purpose & Intent

- ACAT ID Program AoA Dynamic Update will:
 - Inform DA and OSD of the full range of viable options to meet the warfighter's needs
 - Determine affordable and achievable set of requirements that provide significant operational utility to support the goal of opening the requirements gap as wide as possible to facilitate a Engineering and Manufacturing Development Phase full and open competition
 - Illuminate the trade-space inherent in achieving varying degrees of the requirements.
 - Identify technical, schedule, and cost risk (uncertainty) that the potential AoA candidates may face as a vehicle replacement.

How to Conduct Uncertainty Analysis?

- 1. Determine and discuss with technical experts the level of cost, schedule, and technical risk associated with each WBS element;
- 2. Analyze each risk for its severity and probability;
- 3. Develop minimum, most likely, and maximum ranges for each risk element;
- 4. Determine type of risk distributions and reason for their use;
- Ensure that risks are correlated;
- 6. Use an acceptable statistical analysis method (e.g., Monte Carlo simulation) to develop a confidence interval around the point estimate;
- 7. Identify the confidence level of the point estimate;
- 8. Identify the amount of contingency funding and add this to the point estimate to determine the risk-adjusted cost estimate;
- 9. Recommend that the project or program office develop a risk management plan to track and mitigate risks

Common Cost Drivers that Impact Areas of Uncertainty & Risk to Cost Growth/Savings

- 1. Shorter or longer economic life;
- 2. The volume, mix, or pattern of workload;
- 3. Potential requirements changes;
- 4. Configuration changes in hardware, software, or facilities;
- 5. Alternative assumptions about program operations, fielding strategy, inflation rate, technology
- 6. Heritage savings, and development time;
- 7. Higher or lower learning curves;
- 8. Changes in performance characteristics; testing requirements;
- 9. Acquisition strategy, whether multiyear procurement, dual sourcing, or the like;
- 10. Changes in labor rates and material costs
- 11. Growth in software size or amount of software reuse; and
- 12. Down-scoping the program;
- 13. Quantity reduction or increase.

Reference: GAO Cost Estimating and Assessments Guide

Cost Uncertainty Analysis

❖ The Need For:

- ➤ Without risk analysis, a cost estimate will usually be a point estimate, which may not account for all of the uncertainties inherent in the effort
- ➤ Not accounting for potential uncertainties may lead to underfunding, cost overruns, and the potential for a program to be reduced in scope in the future

Operational Definitions:

- ➤ <u>Uncertainty</u> is the indefiniteness about the outcome of a situation. Uncertainty is assessed in cost estimate models for the purpose of estimating the risk's or opportunity's (probability) that a specific funding level will be exceeded
- > <u>Risk/ Opportunity</u> is the probability of an unfavorable/ favorable outcome occurring (i.e. the probability of overrunning/ underrunning the estimated cost)
- ➤ <u>Cost uncertainty & risk/opportunity analysis</u> identifies the cost, in terms of dollars, time, and materials that should be added to a point estimate to increase the probability of meeting the desired outcome

Analysis Methodology:

- 1. Identify Areas of Uncertainty within the Cost Estimate
- 2. Address the Uncertainty within the Cost Estimate
- 3. Quantify the Risk/Opportunity within the Cost Estimate
- 4. Presentation of Results

- 1. Identify Areas of Uncertainty:
 - Objective is to identify areas where variance may have an impact on future costs, and to establish lower and upper bounds to bound this variability.
 - Potential areas of uncertainty include:
 - Cost Estimating: Variability inherent in cost estimating data and methodologies used
 - <u>Technical</u>: Variability in the range of technical options possible to meet requirements
 - Schedule: Variability due to potential fluctuations in duration of activities
 - <u>Requirements:</u> Variability due to potential changes in system performance
 - <u>Programmatic:</u> Variability due to changes in the program's acquisition strategy
 - > Combat and tactical vehicle data sources include:
 - Historical data / trends
 - Cost growth reports
 - Programmatic documents
 - Initial Capabilities Document (ICD), Capability Development Document (CDD), Capability Production Document (CPD)
 - Discussions with Subject Matter Experts (SMEs)
 - Analogous system data- CSDRs and SRDRs, EVM, Contract and Budget Data Reports

Specific Areas of Uncertainty Cost Growth/Savings

- Cost Estimating: Variability inherent in cost estimating data and methodologies used
 - Potential Cost Growth –Average Development Cost Growth Factor of 1.45 2007 RAND Study- "Is Weapon System Cost Growth Increasing?"
- <u>Technical:</u> Variability in the range of technical options possible to meet requirements
 - Potential Cost Growth associated if technology integration approach could be difficult even though individual technologies are relatively mature
- <u>Requirements:</u> Variability due to potential changes in system performance
 - Potential Cost Growth/Savings associated with partial Protection System induction strategy for IFV
- Programmatic: Variability due to changes in the program's acquisition strategy
 - Potential Cost Growth associated if current PM Schedule and chosen Contractor's ability to staff up quickly is not enough to successfully execute the IFV program.
- Schedule: Variability due to potential fluctuations in duration of activities
 - Potential Cost Growth associated with Tech Development (TD) phase to first Production ready vehicle requires more than 7 years

(Past systems trend in schedules for TD to production require more than 7 years on next slide)

- 2. Address the Uncertainty within the Cost Estimate:
 - * Need to determine which identified uncertainties to model (i.e. which are cost-sensitive/cost drivers)
 - Cost methodology highly dependant, reliant upon data available
 - Application of uncertainty dependant upon cost methodology
 - Uncertainty assessment is best done at the lowest-level variables possible
 - Important to identify uncertainty associated with cost drivers at a minimum
 - Selection of appropriate probability distribution for each risk element is critical

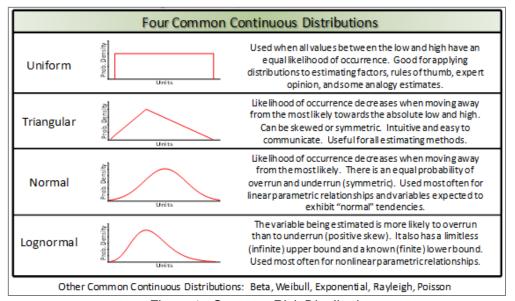


Figure 1: Common Risk Distributions

- 3. Quantify the Risk within the Cost Estimate:
 - ODASA-CE utilizes the Automated Cost Estimating Integrated Tools (ACEIT)
 - ➤ Integrated within ACEIT is a simulation-based risk analysis capability (RI\$K) that allows the analyst to perform cost, schedule, and technical risk and uncertainty analysis
 - Provides the capability to calculate risk results for various confidence levels using Latin-Hypercube sampling
 - > Input: Specification of risk within ACEIT

WBS/CES Description	Point Estimate	Equation / Throughput	RI\$K Specification	Distribution Form	PE Position in	Low (% of PE)	High (% of PE)
5.10 SYSTEMS ENGINEERING/MGMT	\$ 40.452 (50%) *						
5.101 Project Mgmt Admin (PM Civil)	\$ 40.452 (50%) *	SEPM_CIV_FACT	Form=Triangula	Triangular	Mode	90	110

Figure 2: Specifying a Risk Distribution within ACEIT

- > Output: ACEIT risk statistics report
 - Displays statistical results in Base Year (BY) dollars for each WBS element at the specified confidence level

WBS/CES	Point Estimate	Mean	Std Dev	CV	5.0% Level	10.0% Level	15.0% Level	20.0% Level
5.10 SYSTEMS ENGINEERING/MGMT	\$ 40.452 (50%)	\$ 40.451	\$ 3.657	0.090	\$ 34.343	\$ 35.515	\$ 36.404	\$ 37.166
5.101 Project Mgmt Admin (PM Civil)	\$ 40.452 (50%)	\$ 40.451	\$ 3.657	0.090	\$ 34.343	\$ 35.515	\$ 36.404	\$ 37.166
5.102 Other								

Figure 3: Example Statistics Report within ACEIT

4. Presentation of Results:

- * ACEIT can also be used to formulate a Cumulative Density Function (CDF) or S-Curve
 - Each point on the S-Curve identifies the cumulative probability that the associated cost on the x-axis will not be exceeded. This is referred to as the level of confidence in a particular estimate.

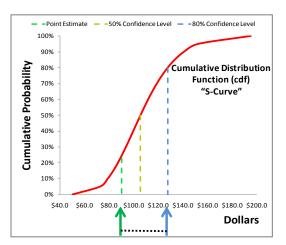


Figure 4: Example S-Curve

 \clubsuit AoA cost estimates are presented as a point estimate at the 50% confidence level accompanied by a risk-informed cost range ($\pm \sigma$)

Uncertainty Management in AoAswith ACEIT 7.3

- Collect data to determine what credentials specify that they are a SME (years of experience, categorization, to weight responses of SMEs)
- Build Survey for SMEs to respond to a Scoring Matrix in Support of Current Inputs used for ACEIT Cost Model
 - ❖ Build Correlation Within ACEIT Cost Model in the Ri\$K Basic worksheet
- Conduct Convergence Testing to Determine Ideal # of Iterations Have Been Simulated Prior to Running Last Risk/Opportunity Adjusted Point Estimate

Summary

- Background
- Cost Analysis Policy
- AoA Purpose and Intent
- Areas for Uncertainty Considerations
- How to Conduct Uncertainty Analysis
- Uncertainty Management in ACEIT 7.3
- Questions

Questions?

Tomeka S. Williams
Senior Operations Research Analyst, Team Lead
Ground Combat & Support Vehicles

Tomeka.Williams.Civ@mail.mil
Office 703-697-1576