Cost Benefit Analysis (CBA) Metrics Calculated in ACE

ACEIT Users Workshop

Sep 18-19, 2012
Mike Allen

- Purpose
- What is a CBA?

■ Why is a CBA Important?
■ Modeling CBA Metrics in ACE
■ Comparing alternatives with ACE and POST

- Conclusion

■ Decisions about how to allocate resources are often supported by a Cost Benefit Analysis (CBA). CBAs consider both quantifiable and non-quantifiable benefits. Quantifiable benefits can be assigned a numeric value such as dollars and ranked based on project selection criteria. These selection criteria (metrics) can be calculated in ACE with the aid of several functions. This presentation will demonstrate the calculation/modeling of the most common metrics used in CBAs.
a structured methodology that determines the costs and benefits of one or more alternatives and compares them in order to identify the best alternative to achieve a stated goal/objective.

- U.S. Army Cost Benefit Analysis Guide, January 2010
.... a systematic approach to identify, analyze, and compare costs or benefits of alternative courses of action that will achieve a given set of objectives.
- U.S. Army Cost Benefit Analysis Guide, January 2010
.... a conceptual framework for systematically investigating problems of choice. Posing various alternatives for reaching an objective, it analyzes the LCCE and benefits of each one, usually with a return on investment analysis.
- GAO Cost Estimating and Assessment Guide, March 2009
.... an objective method for making rational decisions among alternatives. Compares time-phased, economically-adjusted costs and benefits of solutions/alternatives for a defined problem/objective.
- SCEA Online

The CBA Eight-Step Process

Using analysis to make the case for a project or proposal:
Weighing the total expected costs against the total expected benefits over the near, far, and lifecycle timeframes from an Army enterprise perspective.

** - This briefing focuses on steps 7 \& 8

- U.S. Army Cost Benefit Analysis Guide, April 2011

Why CBAs are Important

- Offer a way to systematically assess costs and benefits for each alternative
- Monetary costs and benefits
$>$ E.g., Financial outlays, proceeds from sale of assets, savings
- Non-monetary costs and benefits
$>$ E.g., Loss or gain in capability or performance
- Compare relative strengths and weaknesses of each alternative to identify the most effective alternative that accomplishes the mission
- Provide information so management can make informed decisions on where to allocate resources

Step 7 - Compare Alternatives

- Modeling CBAs in ACE is a two step process
- Estimate the CBA Alternatives
> The Status Quo and each alternative need to be estimated
- Perform the CBA Alternative Comparisons
> Compare the results of the alternatives using various metrics
- Alternatives can be modeled with a single ACE session (Cases) or with multiple ACE sessions
- No matter if you use a single ACE session or multiple ACE sessions, you need to compare the results of the alternatives
- Putting the Cases together
- Use ACE to build a CBA Summary Model (ACE 7.4 will include an example/template)
> Use ACE-to-ACE plug-in to combine results from Status Quo and Alternatives
> Use POST to develop standard reporting and charting (Hint: tie to CBA briefing template)
- A CBA Summary Model makes metric calculations that compare alternatives (cases) easier to perform
- Math across cases is difficult since you cannot reference one case result from within another case

Common Metrics

- Cost Metrics
- NET Benefits - The difference between the benefits and the costs (benefits-costs)
- Net Present Value (NPV) - The present value (PV) of a project's benefits minus the PV of a project's cost; calculated as PV(benefits)-PV(costs)
- Uniform Annual Cost (UAC) - Method used to compare alternatives with unequal lives; calculated by dividing the present value of the cost of an alternative by the sum of the discount factors for the periods covering the life of the alternative
- Index Metrics
- Profitability Index (PI or benefit/cost ratio) - Relative profitability of any project or financial benefit gained from an investment; calculated as PV(benefits)/PV(costs); higher is better
> Savings Investment Ratio (SIR) and Benefits Investment Ratio (BIR) are similar to PI
- Cost/Benefit Ratio - Depicts "unit cost" of benefits; reciprocal of the PI; calculated as PV(costs)/PV(benefits); lower is better
- Year and Rate Metrics
- Pay Back Period - Number of years required to recover initial investment
- Break Even Year - The year in which the initial investment is recovered
- Internal Rate of Return - Also known as Return on Investment (ROI); The discount rate that equates the present value of the benefits with the present value of the costs; discount rate where NPV=0
- ACE has four Economic Analysis functions to help with CBA metric calculations
- EADiscFact() - This function calculates the annual discounting cost multiplier (factor) used in present value calculations.
- EAPayBckPd() - This function determines the payback period needed to recover an investment cost. It returns the fractional number of years required for cumulative savings to be greater than the total investment.
- EABrkEvnYr() - This function determines the break even year for an investment. It returns the first fiscal year in which the cumulative savings is greater than or equal to the total of the investment.
- EADiscVal() - This function determines the discounted value of a cost stream by multiplying a value by an annual discounting factor.

Discount Factor

- The discount factor is used to calculate the present value of future costs and benefits

■ Use the EADiscFact Function
EADiscFact (project_year, rate, method, [current_year])
> Project Year - zero year of project
> Rate - rate used to develop annual multipliers
> Method - indicator variable for cost accrual method

Present Value

- All future costs and benefits are discounted to the present value
- The present value is used in several metric calculations like NPV, PI, and IRR

■ Benefits $=$ Cost Savings + Cost Avoidances + Residual Value

- Cost Savings = Status Quo Operations - Alternative Operations

	WBS/CES Description	Unique ID	P h a	COA 1 - Status Quo	COA 2 - Propulsion and OM Mods	COA 3 - Propulsion, Ground Station and OM Mods	Equation / Throughput	A
45	${ }^{*}$ Status Quo minus Alternative Operations Cost (BY\$)							
46	Total Benefits ($\mathrm{BY} \mathrm{T}^{\prime}$)	TotBen\$		0.000 *	25,932.475*	37,061.761 *		
47	Cost Savings (Operations Costs) ($\mathrm{BY}^{(1)}$	Save_OpCst	F	0.000 *	25,932.475*	37,061.761 *		
48	Cost Avoidances ($\mathrm{BY} \mathrm{Y}^{\text {¢ }}$)		F	0.000 *	0.000 *	0.000 *	CstAvi	
49	Residual Value ($\mathrm{BY} \$$)		F	0.000 *	0.000 *	0.000 *	Res\$	
50								
57	* Status Quo minus Alternative Operations Cost (Present Value)							
58	Total Benefits (PV)	PV_TotEen		0.000 *	11,965.320 *	17,195.539 *		
59	Cost Savings (PV)	PV_Sav	F	0.000 *	11,965.320 *	17,195.539 *	Save_OpCst * DiscFactor	
60	Cost Avoidances (PV)	PV_CstAv ${ }^{\text {d }}$	F	0.000 *	0.000 *	0.000 *	Cstavi * DiscFactor	
61	Residual Value (PV)	PV_Res ${ }^{\text {d }}$	F	0.000 *	0.000 *	0.000 *	Resf * DiscFactor	\checkmark
\leqslant	IIII						$>$	

- Costs = Alternative Investment - Status Quo Investment

	WBS/CES Description	U
63	'Alternative minus Status Quo Investment Cost	
64	Cost Differential (Investment) (BY(\$)	
66	Cost Differential (Investment) (PV)	
\langle		

Unique ID	P h a COA 1 - Status Quo	
Inv_Cst	F	0.000 *
PV_Inv	F	0.000 *

COA2 -	COA 3-Propulsion,
Propulsion and	
OM Mods	Ground Station and
OM Mods	

Equation / Throughput SelAlt_RDTE $\Phi+$ SelAlt_Proc $\$-\operatorname{SQ}$ _RDTE $\$$ - SQ_Proc $\$ 1$
Inv_Cst * DiscFactor v Net Present Value (NPV)

- The difference between the present value of the benefits and the present value of the costs

$>$ PV(benefits)-PV(costs)
$>$ Higher is better
 Uniform Annual cost

- A measure of the relative cost of a project used to compare alternatives with unequal lives
- Calculated by dividing the present value of the costs of an alternative by the sum of the discount factors for the years the system provides benefits
- UAC $=\mathrm{PV}$ (total project cost) / sum of discount factors

	WBS/CES Description	Unique ID	P h a	COA 1 - Status Quo	COA 2 - Propulsion and OM Mods	COA 3 - Propulsion, Ground Station and OM Mods	Equation / Throughput	
2	${ }^{2}$ EA/CBA Metrics							
16	Uniform Annual Cost (lower is better)		C	46,131.467 *	45,275.670 *	44,898.544 *	Selait_TotPV / DisFactSum	
17								
18	'IIIPUT VARIABLES	'III_VAR						
22	Discount Factor	DiscFactor	F	14.240 *	14.240 *	14.240 *	EADISCFACT(PV_Yr-1, DiscRate, DiscNuthd, FYYR)	
23	Sum of Discount Factors	DisFactSum	C	10.405 *	10.405 *	10.405 *	FYCCUM(@DiscFactor,OpLastYr)	
37								
38	* Present Value for selected case							
39	Total Cost (Present Value)	SelAlt_TotPV		\$ 480,007.164 *	\$ 471,102.421 *	\$ 467,178.348 *		
40	RDT8E		F	\$ 37,339.085 *	\$ 37,799.418*	\$ 39,093.852 *	SelA.tıRDTE ${ }^{\text {* }}$ DiscFactor	
41	Procurement		F	\$ 332,046.960 *	\$ 334,647.203 *	\$ 334,658.914 *	SelAlt_Proc \$ * DiscFactor	
42	Military Personel		F	\$ 0.000 *	\$0.000 *	\$0.000 *	SelARt_MilPersf * DiscFactor	
43	Operations \& Support		F	\$ 110,621.120 *	\$ 98,655.800 *	\$ 93,425.581 *	SelA.t_OSI * DiscFactor	\checkmark
<		III					$>$	

Profitability Index (PI) \& Cost Benefit Ratio (CBR)

■ PI and CBR are the inverse of each other

- PI - the present value of total benefits divided by the present value of the total costs (Benefit/Cost ratio)
- PV(total benefits)/PV(total costs)
- >1; Higher is better
- CBR - the present value of total costs divided by the present value of the total benefits
- PV(total costs)/PV(total benefits)
- <1; Lower is better

	WBS/CES Description	 h a	COA 1 . Status Quo	COA 2 - Propulsion and OM Mods	COA 3 - Propulsion, Ground Station and OM Mods	Equation / Throughput	\wedge
2	${ }^{\text {a }}$ EA/CBA Metrics						
5	Profitability Index (Benefit/Cost Ratio) ($¢ 1$, higher is better)	c	0.000 *	3.909 *	3.938 *	$\mathrm{IF}(\mathrm{PV}$ _ $\mathrm{n} \mathrm{V}=0,0, \mathrm{PV}$ _TotEen / PV _Inv)	
8	Cost Benefit Ratio (61 , lower is better)	C	1.000 *	0.256 *	0.254 *	$\mathrm{IF}(\mathrm{PV}$ _TotBen $\leqslant=0,1, \mathrm{PV}$ - $\mathrm{Inv} / \mathrm{PV}$ _TotBen)	\checkmark
<			IIII			$>$	

- Both ratios are related to the Profitability Index
- Slight variations in numerator and denominator

■ Savings Investment Ratio (SIR)

- SIR = PV(cost savings)/(PV(costs)-PV(residual value))
- >1; Higher is better

■ Benefit Investment Ratio (BIR)

- BIR = (PV(cost savings)+PV(cost avoidance))/(PV(costs)-PV(residual value))
- >1; Higher is better

	WBS/CES Description	P h a	COA 1 - Status Quo	COA 2 - Propulsion and OM Mods	COA 3 - Propulsion, Ground Station and OM Mods	Equation / Throughput	\wedge	
2	* EA/CBA Metrics							
6	Savings Investment Ratio (SIR) ($=1$)	c	0.000 *	3.909 *	3.938 *	$1 \mathrm{~F}(\mathrm{PV}$ _ $\mathrm{I} V=0,0, \mathrm{PV}$ _Sav $/(\mathrm{PV}$ _Inv-PV_Res $\Phi)$)		
7	Benefit Investment Ratio (B\\|R) (<1)	C	0.000 *	3.909*	3.938 *		\checkmark	
\leqslant			I			$>$		

Break Even Year

- The point (year) where the investment cost is recovered

■ Use the EABrkEvnYr Function
EABrkEvnYr (@savings, @invest)
> @savings - row where the annual savings cost data is contained
> @invest - row where the annual investment cost data is contained

- Calculation is typically in current year dollars but can be done in discounted or BY dollars

\checkmark ACE 7.3 - [07a - CBA Template for AUW.aceit - Methodology (BY2012SK)]							$\square \square$	
:V Eile Edit Yiew Documentation Calc Cases Reports Iools Window Help							$-{ }^{-9}$	
品Arial -8, -								
$15 \quad \square \quad f_{x}$								
07a-CBA Templ...logy (BY2012\$K)								
	WBS/CES Description	P h a	COA 1 - Status Quo	COA 2 - Propulsion and OM Mods	COA 3 - Propulsion, Ground Station and OM Mods	Equation / Throughput		\wedge
2	${ }^{\text {a }}$ EA/CBA Metrics							
9	Break Even Year (based on discounted \ddagger) (earlier is better)	c	0 *	2021 *	2021 *	EABrkEvnYY((@PV_Toteen, @PV_Inv)		
11	Break Even Year (based on BY) (earlier is better)	c	0 *	2020 *	2021 *	EABrkEvnYr(@TotBen\$, @\|nv_Cst)		
13	Break Even Year (based on TY¢) (earlier is better)	c	1995*	2020 *	2021 *		v_CstTY¢)	
$<$						$\xrightarrow{ }$		
\Methodology/Plug In Links/Yearly Phasing/What if (read only)/Keywords/Custom 1 /								
Ready						NUM		

- The number of years (period) required to recover an investment cost
- Use the EAPayBckPd Function

> EAPayBckPd (@savings, @invest)
> @savings - row where the annual savings cost data is contained
> @invest - row where the annual investment cost data is contained

- Calculation is typically in current year dollars but can be done in discounted or BY dollars

- Internal Rate of Return (IRR) - Also known as Return on Investment (ROI)
- The discount rate at which the present value of the investment cost equals the present value of the savings; discount rate where NPV=0
- Calculate this value using the "Calc with CAIV" option

■ Set up an IRR CAIV line where PV(Benefits) - PV(Cost) $=0$ at the IRR

- Use the EADiscVal Function

EADiscVal (value, project_year, rate, method, [current_year])
> Value - the cost value to be discounted
> Project Year - zero year of project
> Rate - rate used to develop annual multipliers
> Method - indicator variable for cost accrual method

	WBS/CES Description	P h a	COA 1 - Status Quo	COA 2 - Propulsion and OM Mods	COA 3 - Propulsion, Ground Station and OM Mods	Equation / Throughput	슬
18	'IIIPUT VARIABLES						
24	IRR CAIV line (where PV(Cost) = PV(Benefits)	F	-0.000 *	13,846.069 *	20,046.904 *	EADiscVal(TotBen\$, PV_Yr-1, IRR, DiscMthd) - EADiscVal(Inv_Cst, PV_Yr-1, IRR, DiscMthd)	
25							,

Internal Rate of Return (cont.)

- Add a row for the IRR and give it a starting value
- This will be the free variable row that iterates until PV(Benefits) $=\mathrm{PV}$ (Cost)

	WBS/CES Description	P h a	COA 1 - Status Quo	COA 2 - Propulsion and OM Mods	COA 3 - Propulsion, Ground Station and OM Mods	Equation / Throughput	\wedge
2	2 EA/CBA Metrics						
15	Internal Rate of Return (IRR) - also known as Return on Investment (ROI) (higher is better)	C	3.500 *	3.500 *	3.500 *	3.5 [starting value for CAIV]	\checkmark
<	III)		\rangle	

- Steps to calculate with CAIV :

1. Select Calc/Calc with CAIV

IfesAcil culate with CAIV (cont.):

2. Set Estimate Row to "IRR CAIV line (where PV(Cost) = PV(Benefits))" row
3. Make sure Target Total (BY) is "0"
4. Set Free Variable Row to "Internal Rate of Return (IRR) row
5. Under Calculation Options select the appropriate case
6. Click OK

Internal Rate of Return (cont.)

- Steps to calculate with CAIV (cont.):

7. Once the CAIV calculation has converged you will have several options. Select "Save case results as case override to free variable row" and click OK
8. You must now calculate the case to see results on the IRR row

Step 8 - Report Results

Compare Costs Across Alternatives

POST

Multiple cases
Second Level of Visibility for Total Cost (Present Value)
ACE
FY 2008-2029

Multiple cases
Total Cost (Present Value)

Compare Metrics

■ Net Present Value

Multiple cases
NET Present Value (higher is better)

Multiple cases
NET Present Value (higher is better)
 Time Phased Delta Report

- Highlight the magnitude of Costs and Savings

Costs in BY2012 \$K	Total	2012	2013	2014	2015	2016	2017	2018	2019
COA 1-Status Quo	\$480,007.164	\$47,078.654	\$29,080.591	\$28,365.880	\$26,312.060	\$54,140.531	\$66,023.125	\$90,387.824	\$59,518.422
COA 2 - Propulsion and OMMods	\$471,102.421	\$47.489.944	\$29,244.399	\$28,554.415	\$26,396.596	\$54,466.469	\$66,475.906	\$91,111.719	\$59,00 ${ }^{-}$
Delta (0)	-\$8,904.743	\$411.290	\$163.808	\$188.535	\$84.536	\$ 325.938	\$452.781	\$723.896	
Percent A	(1.86\%)	0.87\%	0.56\%	0.66\%	0.32\%	0.60\%	0.69\%	0.80\%	(6)
Threshold	Low Save	Low Cost	Low Sa.						
COA 3 - Propulsion, Ground Station and OP-	\$467,178.348	\$48,312.889	\$29,420.694	\$28,779.724	\$26,368.863	\$54,435.134	\$66,444.634	\$91,079.697	\$58,973.13
Delta (4)	-\$12,828.816	\$1,234.235	\$340.103	\$413.843	\$56.803	\$294.603	\$421.509	\$691.873	-\$545
Percent 4	(2.67\%)	2.62\%	1.17\%	1.46\%	0.22\%	0.54\%	0.64\%	0.77\%	
Threshold	Save	Low Cost	Lo.						

	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
18.422	\$12,359.069	\$10,759.141	\$10,044.796	\$10,130.220	\$8,719.568	\$8,071.846	\$7,472.207	\$5,635.516	\$3,936.018	\$1,971.696
\$59,007.434	\$10,685.187	\$9,165.570	\$8.559.461	\$8,794.822	\$7,429.224	\$6.869.258	\$6,351.265	\$5,113.828	\$3,434.333	\$1,952.590
-\$510.988	-\$1,673.882	-\$1,593.571	-\$1.485.335	-\$1,335.398	-\$1,290.344	-\$1,202.589	-\$1,120.942	-\$521.688	-\$501.684	-\$19.106
(0.86\%)	(13.54\%)	(14.81\%)	(14.79\%)	(13.18\%)	(14.80\%)	(14.90\%)	(15.00\%)	(9.26\%)	(12.75\%)	(0.97\%)
w Save	Med Save	Save	Med Save	Low Save						
2.973.133	\$9,823.348	\$8,361.547	\$7,809.329	\$8,094.974	\$6,776.302	\$6,260.137	\$5,782.960	\$5,095.783	\$3,418.866	\$1,940.335
$-\$ 545.289$	-\$2,535.721	-\$2,397.594	-\$2,235.467	-\$2,035.246	-\$1,943.266	- \$ 1.811 .709	- $\$ 1,689.247$	-\$539.733	-\$517.152	-\$31.361
(0.92\%)	(20.52\%)	(22.28\%)	[22.25\%]	[20.09\%)	[22.29\%)	(22.44\%)	(22.61\%)	(9.58\%)	(13.14\%)	(1.59\%)
Low Save	High Save	Save	Med Save	Low Save						

Custom Reports

■ ACE and POST have numerous standard tabular and graphical output options

■ Organizations sometimes like to see results in a format not part of the standard output options

■ Use POST to create a custom output format and export to PowerPoint

■ Use Excel and POST to createlexport standard reports

1. Create a custom output in Excel and link to results from a standard POST report
2. Give it an "Export" range name
3. Export to PowerPoint as usual

Custom Reports (cont.)

- Export Wizard recognizes range name

Custom Report

- Custom Report can be updated like other POST reports

Detailed Decision Matrix

		COA 1 - Status Quo			COA 2 - Propulsion \& OM Mods			COA 3 - Propulsion, Ground Station and OM Mods		
Criteria	Weight	Data	Rating	Score	Data	Rating	Score	Data	Rating	Score
Total Cost (Constant dollars)	0.40	\$ 736,028	1	0.4	\$714,327	2	0.8	\$704,605	3	1.2
Budget Impact (Current dollars)	0.25	\$ 844,668	1	0.25	\$817,383	2	0.5	\$805,174	3	0.75
Maintenance Downtime	0.15	10 Hrs	2	0.3	8 Hrs	3	0.45	12 Hrs	1	0.15
Response Time	0.10	Very Good	2	0.2	Good	1	0.1	Excellent	3	0.3
Reduced Failure	0.10	5 per 100	2	0.2	3 per 100	3	0.3	8 per 100	1	0.1
Total Score	1.00			1.35			2.15			2.50

Conclusions

- ACEIT can be used effectively to support Army CBA requirements
- At the core of a successful CBA is a solid estimate - ACEIT implements the standard Army Cost Estimating Process
- Status Quo and multiple Alternative estimates easily combined via ACE-to-ACE Plug-In (not shown)
- CBA Metrics are easily calculated
- POST can be used to automate reports and link to the CBA briefing template
■ Extensions
- For apples-to-apples comparison, use ACEIT/RI\$K to perform CBA with consistent risk-adjusted estimates (e.g., normalized to 50\% cost confidence level).

