

CECOM's Tips for Creating More Efficient Estimates

Tom Ferrante & Sonja Holzinger US Army Communications-Electronics Command (CECOM) G8 - Cost and Systems Analysis Division September 2012

Purpose

CECOM cost analysts utilize several sophisticated estimating methodologies in ACE to gain efficiencies. This presentation will address a few of those methodologies, and illustrate how they lead to more dynamic and powerful cost models

- Linking quantity schedules for Procurement, Fielding, and Sustainment
- Using matrices to simplify manpower cost calculations
- Using the "IF" function with ACEIT cases to simplify estimates for CBAs, BCAs, etc.

Linking Quantity Schedules for Procurement, Fielding, and Sustainment

- The following statements are usually true about quantity schedules:
 - The Fielding (delivery) quantity schedule is the Production (buy) quantity schedule shifted out by some period of time (i.e. one year)
 - The Sustainment quantity schedule is the sum of the fielded quantities throughout the system life
 - It is more time consuming to maintain three quantity schedules in ACE than it is to build one

- Why is it advantageous to link schedules?
 - With unlinked schedules, quantity changes during what-if drills can result in significant rework for the analyst
 - If the quantity schedules are linked, the analyst is only required to change quantities in the Production (buy) quantity schedule, thus leading to more timely results
 - Fewer manual changes typically yield fewer errors

19	PRODUCTION QUANTITY SCHEDULE	ProdQty
20	Variant 1	ProdQtyVar1
21	Variant 2	ProdQtyVar2
22		
23	System Production to Fielding Lag in Years	lag
24		
25	FIELDING QUANTITY SCHEDULE	FieldQty
26	Variant 1	FieldQtyVar1
27	Variant 2	FieldQtyVar2
28		
29	System Operational Life	sys_life
30		
31	SUSTAINMENT QUANTITY SCHEDULE (Cumulative)	SustainQty
32	Variant 1	SustainQtyVar1
33	Variant 2	SustainQtyVar2

• ACE functions required:

- Fiscal Year Calculated Value FYCVal()
 - This function returns the calculated yearly value (or sum of yearly calculated values if more than one FY is specified) for a specified row
- Fiscal Year Year FYYR
 - This function returns as a value the fiscal year for each of the FY columns in your ACE session
- Operational Fielded Units OpFieldedUnits()
 - This function determines a time-phased fielded units in use through the current year based on a buy schedule, fielding lag and life expectancy

User-created variables required:

- Lag from Production to Fielding (in years)
- System Operational Life (in years)

	WBS/CES Description	Phasing Method	Approp	Lead /Lag	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016
19	PRODUCTION QUANTITY SCHEDULE								
20	Variant 1	IS			10	20	30	40	50
21	Variant 2	IS			5	10	15	20	25

- Enter the Production quantity schedule in the Yearly Phasing Workscreen
 - This should be the only quantity schedule that needs to be entered manually

10

	WBS/CES Description	Unique ID	Point Estimate	Phasing Method	Equation / Throughput
18					
19	PRODUCTION QUANTITY SCHEDULE	ProdQty	225.000 *		
20	Variant 1	ProdQtyVar1	150.000 *	IS	[Input Throughput]
21	Variant 2	ProdQtyVar2	75.000 *	IS	[Input Throughput]
22					
23	System Production to Fielding Lag in Years	lag	1.000 *	С	1
24					
25	FIELDING QUANTITY SCHEDULE	FieldQty	225.000 *		
26	Variant 1	FieldQtyVar1	150.000 *	F	FYCVAL(@ProdQtyVar1, FYYR - lag)
27	Variant 2	FieldQtyVar2	75.000 *	F	FYCVAL(@ProdQtyVar2, FYYR - lag)

FYCVAL(@ProdQtyVar1, FYYR - lag)

- Use the FYCVal() and FYYR functions, and the created Lag variable to shift out the Production schedule
 - This produces the Fielding schedule

11

	WBS/CES Description	Unique ID	Point Estimate	Phasing Method	Equation / Throughput
25	FIELDING QUANTITY SCHEDULE	FieldQty	225.000 *		
26	Variant 1	FieldQtyVar1	150.000 *	F	FYCVAL(@ProdQtyVar1, FYYR - lag)
27	Variant 2	FieldQtyVar2	75.000 *	F	FYCVAL(@ProdQtyVar2, FYYR - lag)
28					
29	System Operational Life	sys_life		С	20
30					
31	SUSTAINMENT QUANTITY SCHEDULE (Cumulative)	SustainQty	4,500.000 *		
32	Variant 1	SustainQtyVar1	3,000.000 *	F	OpFieldedUnits(@FieldQtyVar1, Sys_Life)
33	Variant 2	SustainQtyVar2	1,500.000 *	F	OpFieldedUnits(@FieldQtyVar2, Sys_Life)

OpFieldedUnits(@FieldQtyVar1, Sys_Life)

- Use the OpFieldedUnits() function and the created System Life variable to make ACE produce the Sustainment schedule
 - The Sustainment schedule should begin in the same year as the fielding schedule

	Row	Cost Element	Approp	Total	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017	FY 2018	FY 2019
1	19	PRODUCTION QUANTITY SCHEDULE		225.000	15.000	30.000	45.000	60.000	75.000			
2	20	Variant 1		150.000	10.000	20.000	30.000	40.000	50.000			
3	21	Variant 2		75.000	5.000	10.000	15.000	20.000	25.000			
4	22	EQUA										
5	23	System Production to Fielding Lag in Years	1	1.000							6	
6	24											
7	25	FIELDING QUANTITY SCHEDULE		225.000		15.000	30.000	45.000	60.000	75.000		
8	26	Variant 1		150.000		10.000	20.000	30.000	40.000	50.000		
9	27	Variant 2		75.000		5.000	10.000	15.000	20.000	25.000		
10	28						j				ĺ.	
11	29	System Operational Life		20.				CU	MULA	ALIVE		
12	30											\rightarrow
13	31	SUSTAINMENT QUANTITY SCHEDULE (Cumulative)	l í	4,500.000		15.000	45.000	90.000	150.000	225.000	225.000	225.000
14	32	Variant 1		3,000.000		10.000	30.000	60.000	100.000	150.000	150.000	150.000
15	33	Variant 2		1,500.000		5.000	15.000	30.000	50.000	75.000	75.000	75.000

- The totals for the Production and Fielding schedules should match
- The Sustainment schedule should be cumulative
 - Quantities should increase until a steady-state is reached, then begin to decrease until all systems have reached the end of their operational lives

U.S. Army Materiel Command | Communications-Electronics Command

13

- There are several costs tied to the people (manpower) associated with any given program
 - Pay & Allowances (P&A), Permanent Change of Station (PCS), Temporary Duty (TDY), training, etc.
- It is simple to account for these costs in ACE, but it often requires entering methodology on many rows
- Again, fewer manual inputs yield fewer errors

	WBS/CES Description	Approp	Unique ID	Point Estimate
6	MP DIRECT FUNDED ELEMENTS	2010	MP\$	\$ 0.000 *
7	CREW - Combat Engineers - MOS 12B	2010	MPCREW\$	\$ 0.000 *
8	Pay and Allowances	2010		\$ 0.000 *
9	PCS	2010		<mark>\$</mark> 0.000 *
10	Training	2010		\$ 0.000 *

EXAMPLE: Estimate P&A, PCS, and training costs for 10 Combat Engineers (MOS 12B) over multiple FYs

- ACE Functions Required:
 - Matrix Column Total MATCOLTOT()
 - This function performs a vector multiplication for a column by column calculation. It returns the dot product of a column vector with a column in another matrix

User-Created Variables Required:

- Number of rows in the matrix
- Vector parent row
- Matrix parent row

	WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput
60	**MOS COUNT					
61	CREW Count - VECTOR	\rightarrow	Vector_CombEngE7	10.000 *		
62	12B Combat Engineer - E7			10.000 *	С	10
63						
64	**MOS RATES					
65	CREW Rates - MATRIX	\rightarrow	Matrix_CombEngE7	0.000 *		
66	12B Combat Engineer - E7				l	[Input Throughput]
67						
68	Number of Rows in Crew Matrix		Num_Rows	1.000 *	С	1

- Build the vector and matrix sections for the manpower to be estimated
 - Specify the vector constant and number of rows in the matrix
 - Note that unique IDs in those sections should be placed on the row preceding the actual data
 - With vectors and matrices, the rows addressed @vector or @matrix are just markers for the beginning of the vector or matrix

	WBS/CES Description	Phasing Method	Approp	Lead /Lag	FY 2012	FY 2013	FY 2014
60	**MOS COUNT						
61	CREW Count - VECTOR				Column 1	Column 2	Column 3
62	12B Combat Engineer - E7	C					
63							
64	**MOS RATES				P&A	PCS	MPA Training
65	CREW Rates - MATRIX						
66	12B Combat Engineer - E7				96.035	3.626	.916
67							
68	Number of Rows in Crew Matrix	С					

- Enter the rates for P&A, PCS, and training in the matrix via the Yearly Phasing Workscreen
 - Use the "I" phasing method, and place the values and phasing method on the child row beneath the marker row
 - Only matrix values are entered in the Yearly Phasing
 Workscreen since the vector and row counts are C-phased

	WBS/CES Description		Approp	Unique ID	Point Estimate Phasing Method		9 1	Equation / Throughput	
6	MP DIRECT FUNDED ELEMENTS		2010	MP\$	\$ 24,138.480 *				
7	(CREW - Combat Engineers - MOS 12B		2010	MPCREW\$	\$ 24,138.480 *			
8		Pay and Allowances		2010		\$ 23,048.400 *		F	MatColTot(Num_Rows, @Vector_CombEngE7,
9		PCS		2010		\$ 870.240 *		F	MatColTot(Num_Rows, @Vector_CombEngE7,
10		Training		2010		\$ 219.840 *		F	MatColTot(Num_Rows, @Vector_CombEngE7,

P&A = MatColTot(Num_Rows, @Vector_CombEngE7, @Matrix_CombEngE7, 1)

PCS = MatColTot(Num_Rows, @Vector_CombEngE7, @Matrix_CombEngE7, 2)

Tng = MatColTot(Num_Rows, @Vector_CombEngE7, @Matrix_CombEngE7, 3)

- In the CES, place the created variables into the MATCOLTOT function and specify the column for the manpower cost category desired
- Use the F-phasing method so that costs are applied in each FY
 - Use start and end dates where necessary

	Row	Cost Element	Approp	Total	FY 2012	FY 2013	FY 2014	FY 2015	FY 2016	FY 2017	FY 2018	FY 2019	FY 2020
1	7	CREW - Combat Engineers - MOS 12B	2010	\$ 24,138.480		\$ 1,005.770	\$ 1,005.770	\$ 1,005.770	\$ 1,005.770	\$ 1,005.770	\$ 1,005.770	\$ 1,005.770	\$ 1,005.770
2	8	Pay and Allowances	2010	\$ 23,048.400		\$ 960.350	\$ 960.350	\$ 960.350	\$ 960.350	\$ 960.350	\$ 960.350	\$ 960.350	\$ 960.350
3	9	PCS	2010	\$ 870.240		\$ 36.260	\$ 36.260	\$ 36.260	\$ 36.260	\$ 36.260	\$ 36.260	\$ 36.260	\$ 36.260
4	10	Training	2010	\$ 219.840		\$ 9.160	\$ 9.160	\$ 9.160	\$ 9.160	\$ 9.160	\$ 9.160	\$ 9.160	\$ 9.160

Results are consistent with expectations (rates x number of people)

- P&A rate (E7) = \$96.03K * 10 Combat Engineers = \$960.35K
- PCS rate (E7) = \$3.62K * 10 Combat Engineers = \$36.26K
- Training rate (E7) = \$0.91K * 10 Combat Engineers = \$9.16K

Using the "IF" Function with ACEIT Cases to Simplify Estimates for CBAs, BCAs, etc.

U.S. Army Materiel Command | Communications-Electronics Command

21

Cost modeling with flexibility in mind:

- Fiscal reality and What-if scenarios
- Business Case Analysis (BCA), Cost Benefit Analysis (CBA), and Analysis of Alternatives (AoA) all represent different forms of What-If analyses

- Example will show how to utilize the IF function & FY functions in combination with ACEIT Cases to create multiple What-If scenarios and quickly calculate costs for all cases
- This approach allows for one single ACEIT model instead of multiple models

- Ground Rules & Assumptions:
 - Joint requirement for system "X"
 - The Army has established contract for New Equipment Training (NET)
 - As long as the Army is buying system "X", "sister" Services can leverage NET established by the Army. However, if the Army is not buying the system, "sister" Services will have to establish their own NET, which will increase the cost by 30% per NET, per system, and also cause a 12-month delay

ACE functions required:

- If(Condition, Yes [, No])
 - In our example, the condition is "If the Army is buying the System 'X':"
 - If Yes, NET cost will be \$500K
 - If No, the cost for the Services will be 30% higher and NET will be delay by 12 months
- Fiscal Year Total FYTot(@Var)
- FYCSLIP (SlipMonths, @var)
- ACEIT Cases

	WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput	Fiscal Year	Units	
40									1
41	INPUT VARIABLES		"IN_VAR						
42									
43	Unit Cost	2035	UCS	\$ 1,200.000 *		1.2	2012	SN	1
44									
45	Production Schedule			940.000 *					
46	Army		BuyQty_ARMY	500.000 *	IS	[Input Throughput]			
47	Navy		BuyQty_NAVY	250.000 *	IS	[Input Throughput]			
48	USAF		BuyQty_USAF	150.000 *	IS	[Input Throughput]			
49	USMC		BuyQty_USMC	40.000 *	IS	[Input Throughput]			1
50			RANDON AND AND AND AND AND AND AND AND AND AN	2.1.5255.04.0					
51	New Equipment Training (NET) per Fielded Unit	2035	NET_per_UNIT\$	\$ 500.000 *		500	2012	SK	ζ
52	NET cost increase if Army does not buy any unit		NET_INCREASE_FACTOR	0.300 *		.30			1
53	NET cost with increase factor	2035	NET_W_IF\$	\$ 650.000 *		NET_per_UNITS*(1+NET_INCREASE_FACTOR)		SH	ς
54									

Using the "IF" Function with Multiple Cases

27

	WBS/CES Description	Approp	Unique ID	Point Estimate	Phasing Method	Equation / Throughput
26	NEW EQUIP TRAINING (NET)	2035	PROCNET\$	\$ 470,000.000 *		
27	Army	2035		\$ 250,000.000 *	F	BuyQty_ARMY*NET_per_UNIT\$
28	Navy	2035		\$ 125,000.000 *	F	lf(FYTot(@BuyQty_ARMY)>0, BuyQty_NAVY*NET_per_UNIT\$, FYCSlip(12, @BuyQty_NAVY)*NET_W_IF\$)
29	USAF	2035		\$ 75,000.000 *	F	If(FYTot(@BuyQty_ARMY)>0, BuyQty_USAF*NET_per_UNIT\$, FYCSlip(12, @BuyQty_USAF)*NET_W_IF\$)
30	USMC	2035		\$ 20,000.000 *	F	lf(FYTot(@BuyQty_ARMY)>0, BuyQty_USMC*NET_per_UNIT\$, FYCSlip(12, @BuyQty_USMC)*NET_W_IF\$)

Army = BuyQty_ARMY* NET_per_UNIT\$

Navy = IF(FYTot(@BuyQty_Army)>0, BuyQty_NAVY*NET_per_UNIT\$,FYCSLIP(12,@BuyQty_NAVY)*NET_IF\$)

ACE 7.	.3 - [ACEIT CONFERENCE CASES_06AUG	2012.aceit	Methodology	(BY20125K))]		
i 🗋 🖆	; 🖬 🖆 🦪 🛝 i 🔉 🕰 🕩 🞗	1 5 (2)	30 3× 10%	6 % +T ·	100% -		
Arial	• 10 • <u>A</u> • 🖄	BI	U .00 - Me	thodology	- 💷 🏭	🗈 🔉 - 🥶	• 📴 🏹 • 💵 💯 🌆 🖌 📕
18410]¶] © ≫ <u>≫</u> ∞ 97 97 Å	1 20 25	油生主义	FX -			
🐑 Ele	Edit View Documentation Car	Cases Rep	orts <u>T</u> ools <u>V</u>	Modow Help	,		
"INPUT V	ARIABI + 🖍 🍓 🎦	View Cas	es				
	EIT CONFERENogy (BY2012\$K)	Add Cas	e Ctrl+A	125K)			
	WBS/CES Descriptio	Add CAI	e Case	ique ID	Point Estimate	Phasing Method	Equation / Throughput
26	NEW EQUIP TRAINING (1	Import C	Import Case		\$ 470,000.000 *		
27	Army	Export C			\$ 250,000.000 *	F	BuyQty_ARMY*NET_per_UNIT\$
28	28 Navy		Set Default Case		\$ 125,000.000 *	F	If(FYTot(@BuyQty_ARMY)>0, BuyQty_NAVY*NET_per_UNIT\$, FYCSlip(12, @BuyQty_NAVY)*NET_W_IF\$)
29	29 USAF		Set Baseline Case		\$ 75,000.000 *	F	If(FYTot(@BuyQty_ARMY)>0, BuyQty_USAF*NET_per_UNIT\$, FYCSlip(12, @BuyQty_USAF)*NET_W_IF\$)
30	USMC	Lonoge	2035		\$ 20,000.000 *	F	lf(FYTot(@BuyQty_ARMY)>0, BuyQty_USMC*NET_per_UNIT\$, FYCSlip(12, @BuyQty_USMC)*NET_W_IF\$)

Next step – Add Case to your model

- Enter new case name and description
 - In our example, we will create case "Army Buy is Zero"
- New screen will open and you will be able to see your Case
- Under Input Variables section, find Production Schedule and enter 0 for the Army

ACE 7.3 - [ACEIT CON	FERENCE	ECASES_06AUG2012.aceit - Inputs/Results Viewer ([BY2012\$K)]						
Inputs *	Phased b	by Case 🔹 📄 📴 🗗 🦓 🚷 🕶 🌆	* 4 4 7						
Ele Edit View	Mode	<u>Calc Cases Reports Tools Window Help</u>							
1 1 Ja 1 1 1 1 1 1									
EX DO DALLOS ON L	- <u>→</u>	24 100% ×							
	no no								
-6 *	fx max	à							
ACEIT CONFERENCE	logy (B	W20125K) STREET CONFERENwer (BY20125K)							
Point Estimate Army buy is zero		WBS/CES Description	Cost Interpretation	Total	FY 2014	FY 2015	FY 2016	FY 2017	FY 2018
	22	INITIAL SPARES (REPRBLES)							
	23	INIT RP PTS (CONSUMABLES)							
	24	INITIAL SUPPORT EQUIPMNT							
	25	TRANSPORTATION (TO UNIT)							
	26	NEW EQUIP TRAINING (NET)		\$ 286,000.000 *		\$ 55,250.000 *	\$ 87,750.000 *	\$ 87,750.000 *	\$ 55,250.000 *
	27	Army							
	28	Navy		\$162,500.000 *		\$ 32,500.000 *	\$ 48,750.000 *	\$ 48,750.000 *	\$ 32,500.000 *
	29	USAF		\$ 97,500.000 *		\$ 16,250.000 *	\$ 32,500.000 *	\$ 32,500.000 *	\$16,250.000 *
	30	USMC		\$ 26,000.000 *		\$ 6,500.000 *	\$ 6,500.000 *	\$ 6,500.000 *	\$ 6,500.000 *
	31	CONTRACTOR LOGISTICS SPT							
	32	TRAINING AMMO/MISSILES	-						
	33	WAR RES AMMO/MISSILES							
	34	MODIFICATIONS							
	35	OTHER PROCUREMENT							
	36	MC FUNDED ELEMENTS							
	37	MP DIRECT FUNDED ELEMENTS	-						
	38	OM FUNDED ELEMENTS	-						
	39	ARMY WORKING CAPITAL FUND (AWCF) ELEMENT							
	40								
	41	"INPUT VARIABLES							
	42	11.5.8.1							
	43	Unit Cost		\$1,200,000*					
	44			110.000 1	05 000 *	105 000 -	105 000 -	05 000 -	
	45	Production Schedule		440.000 *	95.000 *	135.000 *	135.000 *	85.000 *	
I		Army		000 000 1		75 000 -	75 000 -	F0 000 -	
I	41	Navy		250.000 *	0.000 *	/5.000 *	75.000 *	50.000 *	
I	48	HOP		150.001*	25.000 ×	50.000 *	50.000 *	25.000 *	
I	49	USMC		40.000 *	10.000 *	10.000 *	10.000 *	10.000 *	

U.S. Army Materiel Command | Communications-Electronics Command

30

31

 Point Estimate Army buy is zero 		WBS/CES Description	Tota	ł	FY 2014	FY 2015	FY 2016	FY 2017
	22	INITIAL SPARES (REPRBLES)						
	23	INIT RP PTS (CONSUMABLES)						
	24	INITIAL SUPPORT EQUIPMENT						
	25	TBANSPURTATION (TO UNIT)						
	26	NEW EQUIP TRAINING (NET)	\$ 470	.000.003	\$ 92,500.000	\$142,500.000	\$142,500.000	\$ 92,500.000
	27	Army	\$ 250	.000.000	\$ 50,000,000	\$ 75,000.000	\$ 75,000,000	\$ 50,000,000
	28	Navy	\$ 125	000.000	\$ 25,000.000	\$ 37,500.000	\$ 37,500.000	\$ 25,000,000
	29	USAF	\$ 75	000.000	\$ 12,500,000	\$ 25,000.000	\$ 25,000.000	\$12,500.000
	30	USMC	\$ 20	000.000	\$ 5,000.000	\$ 5,000.000	\$ 5,000.000	\$ 5,000.000
•								
Point Estimate		WBS/CES Description	Total	FY 201	4 FY 2015	5 FY 2016	FY 2017	FY 2018
	22	INITIAL SPARES (REPRBLES)				\sim		
	23	INIT RP PTS (CONSUMABLES)			EVI	1 in \$0		
	24	INITIAL SUPPORT EQUIPMNT				4 15 50		
	25	TRANSPORTATION (TO UNIT)			0			
	26	NEW EQUIP TRAINING (NET)	\$ 286,000.000		\$ 55,250.	000 \$87,750.0	00 \$ 87,750.000	\$ 55,250.000
	27	Army						
	28	Navy	\$ 162,500.000		32,500.	000 \$ 48,750.0	00 \$ 48,750.000	\$ 32,500.000
	29	USAF	\$ 97,500.000		\$ 16,250.	000 \$ 32,500.0		\$ 16,250.000
I	30	USMC	\$ 26,000.000		\$ 6,500.	000 \$ 6,500.0	00 \$ 6,500.000	\$ 6,500.000

Results in BY\$2012 (K)

Summary

- Topics Covered:
 - Linking quantity schedules for Procurement, Fielding, and Sustainment
 - Using matrices to simplify manpower cost calculations
 - Using the "IF" function with multiple cases to simplify estimates for CBAs, BCAs, etc.
- Applying these methodologies in ACE should result in more efficient and dynamic cost models

Questions

Tom Ferrante

Operations Research Analyst Army - CECOM

thomas.a.ferrante2.civ@mail.mil

Sonja Holzinger

Operations Research Analyst Army - CECOM sonja.holzinger.civ@mail.mil

33