
User Defined Functions
 N t Th t S

User Defined Functions
 N t Th t Sare Not That Scaryare Not That Scary

Approved for Public ReleasePR-?, 26 January 2010 1

OverviewOverviewOverviewOverview

Why Bother? I always find it more difficult
Nuts ‘n Bolts
Addressing @

y f ff
to say the things I mean
than the things I don't.

W Somerset MaughamAddressing @
CS in 15 Minutes
UDF Design Tips

- W. Somerset Maugham

UDF Design Tips
UDF Toolbox
Performance Concerns
Troubleshooting Tips

PR-?, 26 January 2010 Approved for Public Release 2

They Scare Me!They Scare Me!They Scare Me!They Scare Me!

Fearing the User-Defined Function
The syntax confuses me
I’m not using a generalized algebraic equation
They are impossible to debug
No time to “plan for change”
I prefer copy/paste
Too late to use one now

Fear is the path
…

Fear is the path
to the Dark Side.

- Yoda

PR-?, 26 January 2010 Approved for Public Release 3

Why?Why? Why Not!Why Not!Why?Why? Why Not!Why Not!

Embracing the UDF
Capture & reuse strategies
Avoid repeated repetition
Isolate & localize complexity
Document intentions
Facilitate flexibility
Earlier is always easier

Small opportunities
are often the

b i i f t beginning of great
enterprises.

- Demosthenes

PR-?, 26 January 2010 Approved for Public Release 4

Demosthenes

Quick ExampleQuick ExampleQuick ExampleQuick Example

Rows below contain a common estimating strategy
T lt th t t ALL t b dit dTo alter the strategy– ALL rows must be edited
If the strategy was isolated to a UDF—edit ONE row

Plus easier to review CER intention with UDFPlus, easier to review CER intention with UDF

PR-?, 26 January 2010 Approved for Public Release 5

Ace Example File: 07 - Detailed LCC Estimate.aceit

UDF Nuts & BoltsUDF Nuts & BoltsUDF Nuts & BoltsUDF Nuts & BoltsUDF Nuts & BoltsUDF Nuts & BoltsUDF Nuts & BoltsUDF Nuts & Bolts

Approved for Public ReleasePR-?, 26 January 2010 6

What What ISIS a UDF?a UDF?What What ISIS a UDF?a UDF?

You create a User-Defined Function (UDF) to:
Centralize a repeated calculation
Separate control from cost calculations
Hide details so that changes are easier

A UDF is defined on a single row in your session.
But, a UDF row is never evaluated.
Instead, it is evaluated inside other rows’ equations.

A UDF b h j t lik B ilt I ACE f tiA UDF behaves just like a Built-In ACE function
Arguments and result are in row’s units (wrapped)
C E A i UDF i i S i U itCommon Error: Assuming UDF is in Session Units

PR-?, 26 January 2010 Approved for Public Release 7

UDF DeclarationUDF DeclarationUDF DeclarationUDF Declaration

A UDF Consists of Four (4) Parts [in 3 columns]:
D i ti t di ti i h it f tDescription—to distinguish it from a comment row
Unique ID—must be unique to whole session
Argument List—values used in its equation
Equation—the math used to produce a result

Only three columns are
active on a UDF rowactive on a UDF row

T t t UDF d l ti

PR-?, 26 January 2010 Approved for Public Release 8

Two parts to UDF declaration
– name & list of arguments

UDF EvaluationUDF EvaluationUDF EvaluationUDF Evaluation

Think “Inline Substitution” (almost)
You can “insert” a UDF into equation and get the same result
This metaphor helps visualize context of UDF calculation
It is important to note that numbers are substituted—not textIt is important to note that numbers are substituted not text

Rows 37 & 38
produce same resultproduce same result

PR-?, 26 January 2010 Approved for Public Release 9

Example from ACE Help topic “User Defined Functions”Example from ACE Help topic “User Defined Functions”

Evaluation WalkthroughEvaluation WalkthroughEvaluation WalkthroughEvaluation Walkthrough

WT = 88 SEA=1

15 + DP(88, 1)

DP(W=88, S=1) = 2 * W^0.5 * 1.5^S

= 2 * 88^0.5 * 1.5^1

15 + (2 * 88^0 5 * 1 5^1)

PR-?, 26 January 2010 Approved for Public Release 10

15 + (2 88 0.5 1.5 1)

ID VisibilityID VisibilityID VisibilityID Visibility

UDF with same name hides built-in function
Useful if you don’t like how ACE implemented a function
Not recommended due to ambiguity and confusion it causes

UDF argument with same name hides Unique IDUDF argument with same name hides Unique ID
A necessary evil--Beware of the confusion that may arise
Sharing names among UDFs is a good thing (limited scope)

Hidden

PR-?, 26 January 2010 Approved for Public Release 11

‘Local’Hider

Addressing Addressing @@Addressing Addressing @@
(How to impersonate a row ID)(How to impersonate a row ID)(How to impersonate a row ID)(How to impersonate a row ID)

Approved for Public ReleasePR-?, 26 January 2010 12

Problem: BuiltProblem: Built--In @ ArgumentsIn @ ArgumentsProblem: BuiltProblem: Built--In @ ArgumentsIn @ Arguments

Some ACE functions need a row address: FycMax(@Row)
Yet, a UDF translates its arguments to numbers

And you cannot apply an “@” operation to a number

ACE thinks “Row”
ACE Error: “@ applied to number”

ACE thinks Row
is a number

Inline Substitution: Inline Substitution:

PR-?, 26 January 2010 Approved for Public Release 13

Inline Substitution:
1.2 * FYCMax(@115.0)

Inline Substitution:
1.2 * FYCMax(@48.0)

Solution: UDF @ ArgumentsSolution: UDF @ ArgumentsSolution: UDF @ ArgumentsSolution: UDF @ Arguments

Define argument to accept a row address w/ @ prefix
Thi i b i ll k d t th ’ ltThis is a number specially marked to access another row’s results

The argument name is an alias for the row number passed in
It’s like creating a temporary row ID that is used only inside of UDFg p y y

“@” tells ACE the ”Row” argument
behaves like a Unique ID of a row.

PR-?, 26 January 2010 Approved for Public Release 14

Inline Substitution:
1.2 * FYCMax(@Total)

@ Argument Example@ Argument Example@ Argument Example@ Argument Example

“Dot” Attribute $$$Dot Attribute “Value” of C$$$ “@” Reference

PR-?, 26 January 2010 Approved for Public Release 15

Comp Comp SciSci in 15 Minutesin 15 MinutesComp Comp SciSci in 15 Minutesin 15 MinutesComp Comp SciSci in 15 Minutesin 15 MinutesComp Comp SciSci in 15 Minutesin 15 Minutes

Approved for Public ReleasePR-?, 26 January 2010 16

What I learned in CSWhat I learned in CSWhat I learned in CSWhat I learned in CS

Change is Inevitable especially when assured otherwiseChange is Inevitable–especially when assured otherwise
Refine through Iteration—nothing is ever complete
Hide Details—expose intent and expectationsp p
Test Early and Often—hope springs eternal bugs

Determine, Capture and Isolate Strategies

If I had asked people what they wanted If I had asked people what they wanted,
they would have said faster horses.

- Henry Ford

PR-?, 26 January 2010 Approved for Public Release 17

y

Hiding “How”… Hiding “How”… AbstractionAbstractionHiding “How”… Hiding “How”… AbstractionAbstraction

Layer details of a strategy under an interface
Shows what is expected (e.g. argument, context)

The row populates the UDF arguments
Hides how it is implemented (i.e. math)Hides how it is implemented (i.e. math)

The UDF equation implements the math “behind the scenes”

Travel$(Distance FuelRate MPG) How Travel$ is

Advantages:

Travel$(Distance, FuelRate, MPG)
calculated is

hidden away on
another row

Advantages:
Change underlying calculation at any time (‘cause it’s hidden)
Use UDF instead of copying, decoding & modifying its mathpy g g y g
Verifying a CER’s intent just got a lot easier

PR-?, 26 January 2010 Approved for Public Release 18

Isolate and Refine… Isolate and Refine… IterationIterationIsolate and Refine… Isolate and Refine… IterationIteration

Introduce UDFs earlier rather than later
Your UDF does not have to be a finished product
You can always come back to refine your thinking
In this way you only have one place to refine (or repair)In this way, you only have one place to refine (or repair)

My Travel Cost UDF:

Distance * 0.35

Distance * FuelRate / MPG

Dist * (MaintRate + FuelRate / MPG)()

PR-?, 26 January 2010 Approved for Public Release 19

Building Blocks… Building Blocks… ReusabilityReusabilityBuilding Blocks… Building Blocks… ReusabilityReusability

Build Building Blocks of UDFs
Even a simple build-up easier to interpret as a UDF
Ex: Suppose “Area” is common in a session’s build-ups:

7.1 * 3.55 * 7.25 Material$(7.1, Area(3.55, 7.25))

.4*(2.5*7.25)^.5 Labor$(0.4, Area(2.5, 7.25))

UDFs are much easier to borrow than CERs
N d t h t th h ti t l i bl

.4 (2.5 7.25) .5 Labor$(0.4, Area(2.5, 7.25))

No need to hunt through equation to replace variables
Hint: Check out “Section Templates” in ACE help

PR-?, 26 January 2010 Approved for Public Release 20

Bookkeeping… Bookkeeping… EncapsulationEncapsulationBookkeeping… Bookkeeping… EncapsulationEncapsulation

Separate decision-control from WBS/CES
IF() and SEL() are best stashed elsewhere
For instance…

selecting among several values,
filtering values based on type,
applying adjustments (nudges, fudges or errors),applying adjustments (nudges, fudges or errors),
boundary tests and corrections

Watch for patterns developing in WBS
Ask if the row has a need to know
If not, decouple decision-control from cost calculation

PR-?, 26 January 2010 Approved for Public Release 21

Bookkeeping ExampleBookkeeping ExampleBookkeeping ExampleBookkeeping Example

User wanted zeroes to appear in phased reports
Every Row in WBS contained following logic:

IF([CER]>0, [CER], 0.0001)

But this logic isn’t “row specific” -- unimportant to row
Cannot “turn off” behavior without editing every equation in WBS

R d b t ti / l tiRecommend abstraction/encapsulation:
Each row’s CER becomes…

ShowZero([CER])

Row requests zeroes in report but doesn’t control report setting.

ShowZero([CER])

PR-?, 26 January 2010 Approved for Public Release 22

UDFUDF: ShowZero(X) == IF(X>0,X,IF(Hide, 0, 0.0001))

UDF Design TipsUDF Design TipsUDF Design TipsUDF Design TipsUDF Design TipsUDF Design TipsUDF Design TipsUDF Design Tips

Approved for Public ReleasePR-?, 26 January 2010 23

Hunting For RepetitionHunting For RepetitionHunting For RepetitionHunting For Repetition

Don’t try to guess what you need
Let the session structure emerge first
But watch for repetition—tendency to copy/paste/edit rows
Introduce UDF on next refinement iterationIntroduce UDF on next refinement iteration

Judicious pattern matching
Identify the calculation strategy that rows have in common

Not just the arithmetic symbols in common
Not just a list of different unique IDs

You need to identify 3 things:You need to identify 3 things:
1) Which part of the row’s equation is in common
2) Which parts vary from row to row) p y
3) Which values to pass in instead of calculate internally

PR-?, 26 January 2010 Approved for Public Release 24

Example of 3 PartsExample of 3 PartsExample of 3 PartsExample of 3 Parts

The two rows below have obvious similarities
The whole CER can be converted to a UDF

no row-specific fringe to leave behind

2 parts vary from row to row
HWModYrs & SWModYrs
HWMod% & SWMod%

But is that our strategy?
PR-?, 26 January 2010 Approved for Public Release 25

Example of 3 Parts (cont)Example of 3 Parts (cont)Example of 3 Parts (cont)Example of 3 Parts (cont)

There are two equally viable “strategies” here.
O t th % f AV$ th th th t l tOne expects the % of AV$, the other the actual cost:

ContImpr$(ModYrs, Mod$) ContImpr$(ModYrs, Mod%)

It isn’t always in your best interest to pass in the
rudimentary variables and do all the calculation in the UDF.
Which to use depends on where the session is headingWhich to use depends on where the session is heading.

Passing a cost is more general but requires an intermediate calc.
If AV$ is always used, the intermediate calc clutters the row.

Passing a Mod% encapsulates the intermediate calc in the UDF.
But the UDF is only useful when improvement depends on AV$

Usage: ContImpr$(SWModYrs, AV$.FYTot * SWMod%)

But the UDF is only useful when improvement depends on AV$.

Usage: ContImpr$(SWModYrs, SWMod%)
PR-?, 26 January 2010 Approved for Public Release 26

Example 2 Example 2 -- BuildupBuildupExample 2 Example 2 -- BuildupBuildup

Remember the “Area()” building block?
Did ll d A () UDF?Did we really need Area() UDF?
Is it our strategy?
Do we plan to use it elsewhere? 0 4*(2 5*7 25)^ 5
More sense to calculate directly?
Should we pass dimensions into UDF?

0.4 (2.5 7.25) .5

Usage: Labor$(0.4, Area(2.5, 7.25))

Usage: Labor$(0.4, 2.5 * 7.25)

Usage: Labor$(0 4 2 5 7 25)Usage: Labor$(0.4, 2.5, 7.25)

PR-?, 26 January 2010 Approved for Public Release 27

UDF Naming TipsUDF Naming TipsUDF Naming TipsUDF Naming Tips

Describe the result in the UDF name
This is called self-documenting and is a cool CS technique
Avoid using names that differ by only a letter or two

Use descriptive words (or abbrvs) for argument names
Names are local, so you can use short names
Avoid using 1-2 letter names for arguments
Include expected units in name to clarify how to call UDF

PR-?, 26 January 2010 Approved for Public Release 28

Sin(X) Sin(Angle) Sin(Radians)

UDF ToolboxUDF ToolboxUDF ToolboxUDF ToolboxUDF ToolboxUDF ToolboxUDF ToolboxUDF Toolbox

Approved for Public ReleasePR-?, 26 January 2010 29

Access “Dotted” ValueAccess “Dotted” ValueAccess “Dotted” ValueAccess “Dotted” Value

Problem: Can’t access dotted value
Syntax won’t let you get to DEC with row offset

(@Row+X).aStartDate + Duration

Solution: UDF that takes row and returns value:
Note: You would need one UDF for each DEC

PR-?, 26 January 2010 Approved for Public Release 30

Adding an ArgumentAdding an ArgumentAdding an ArgumentAdding an Argument

What if you realize that you need another variable
passed into your UDF?passed into your UDF?

Add new name to the front of argument list
Replace UDF name and open parentheses with default
“placeholder” value as shown below“placeholder” value as shown below.
Don’t forget the separating comma!

Insert new argument
with comma separator.

PR-?, 26 January 2010 Approved for Public Release 31

p

DEC as Backdoor ArgumentDEC as Backdoor ArgumentDEC as Backdoor ArgumentDEC as Backdoor Argument

Use DECs as “backdoor” arguments
R d l tt i th “E /Th t” llReduces clutter in the “Equ/Thrupt” cell
Fewer arguments to declare and pass into UDF
Useful for flags, type arguments, and WBS row offsets
Opens the way for category filtering using SUMIF()

PR-?, 26 January 2010 Approved for Public Release 32

Performance ConcernsPerformance ConcernsPerformance ConcernsPerformance ConcernsPerformance ConcernsPerformance ConcernsPerformance ConcernsPerformance Concerns

Approved for Public ReleasePR-?, 26 January 2010 33

UDF PerformanceUDF PerformanceUDF PerformanceUDF Performance

Yes, UDF is slower than direct evaluation

Count on row calc time to roughly double (WAG)
That means if 20% of rows use a UDF, your session will take 20%
longer to calculate.g

Yes, DEC is slower than no DEC
Count on row calc time to roughly double

That means if 20% of rows use DECs, your session will take 20%
longer to calculate.

Higher math: Using both UDFs and DECs
If 20% of rows use both, calculation takes 60% longer!

PR-?, 26 January 2010 Approved for Public Release 34

Performance TuningPerformance TuningPerformance TuningPerformance Tuning

Some time savings found when…
UDF h f tUDF has fewer arguments
UDF uses short argument names (dissimilar prefix)
Intermediate calculations performed as argument

E.g., MyFunc(X*B^E, 1.2/B)
AND when argument used multiple times in UDF

For “F” method rows consider using Start/FinishFor F method rows, consider using Start/Finish
years.
For RI$K calculations…

Default to small number of iterations for “Draft” reports.
Set large number of iterations in “Final” reports.

PR-?, 26 January 2010 Approved for Public Release 35

Troubleshooting TipsTroubleshooting TipsTroubleshooting TipsTroubleshooting TipsTroubleshooting TipsTroubleshooting TipsTroubleshooting TipsTroubleshooting Tips

Approved for Public ReleasePR-?, 26 January 2010 36

Tips for TestingTips for TestingTips for TestingTips for Testing

The first rule in testing is…
K th b f th t tKnow the answer before you run the test.

Start by assuming that you did something wrong.
If you did it right, it would work.y g ,
Mistakes hide well within one’s certainty.

Look for stupid stuff first.
U T b k di l h i if i bl d i iUse Traceback dialog or hover tips to verify variable descriptions.
Make sure “@” usage matches UDF declaration.

Computers have the annoying habit of
doing exactly what they are told.

PR-?, 26 January 2010 Approved for Public Release 37

- CS Proverb

Tips for TestingTips for TestingTips for TestingTips for Testing

Check assumptions of UDF equation.
E t t b d “C” “F” th d? C t i t i it ?Expect to be used on “C” or “F” method? Costs in certain units?

Work from inside out.
Find a place where you get known, desired behavior.p y g ,
Then, work outwards until expectation fails.

Isolate in separate, small session file.
G f h l f l iGet away from the clutter of a complex session.
Makes it easier to dissect UDF without breaking calculation.

Beware of RI$K.$
Does distribution approach zero? Can value become negative?

Remember UDF evaluation sequence:
Resolve argument values, insert values into UDF, insert UDF into
row/cell equation.

PR-?, 26 January 2010 Approved for Public Release 38

In ReviewIn ReviewIn ReviewIn Review

UDFs aren’t just for math majors
Use UDFs to centralize cost & control strategies

CS concepts of “Abstraction” and “Reuse”

Remember “inline substitution” metaphorRemember “inline substitution” metaphor
UDF takes on context of row’s (cell’s) using it

Test UDFs by isolating them—go from inside outTest UDFs by isolating them go from inside out
Don’t worry too much about performance
The more you use them, the easier they becomey , y

PR-?, 26 January 2010 Approved for Public Release 39

