

Automated Cost Estimating Integrated Roots

ACE Joint Probability Utility Joint Cost & Schedule Risk Analysis

James Johnson ACEIT Users Conference, Santa Barbara, CA January 2009

Tecolote Research, Inc.

Copyright © Tecolote Research, Inc. January 2009

Abstract

This presentation demonstrates the upcoming Joint Probability Utility and its application. It will show an example of how to use the tool to conduct a Joint Cost & Schedule Risk Analysis, construct visualizations, and report calculated results. Lastly, it will expand on the example by discussing other possible applications such as joint analysis of development and production costs.

What do I mean by Joint Probability?

- Conducting the Cost Risk Analysis
- Conducting the Schedule Risk Analysis
- Key Factors, End Result, and Definitions

Using the simulation results

• Process in Joint Probability Utility (JPU)

Visualization Outputs

- Scatter Plot
- Joint Probability Contour Plot
- Cumulative Probability Contour Plot

More than just Cost & Schedule

- Examples using ACE Tutorial File
- Conclusion

What is Joint Probability?

What do I mean by Joint Probability?

- The probability of two random variables, each with their own distribution (uncertainty) occurring a particular point
- Cumulative Joint Probability (or Joint Confidence Level) is the total cumulative probability of both variables being at or lower than the target variable
- For only two variables, such as cost & schedule, the result is a bivariate distribution.
- Analyzing the resulting distribution can provide
 - Joint Probability
 - Cumulative Probability
 - Joint Confidence Level

• Example: Rolling 2 regular dice (6-sided), what is the probability that a Die one will equal 1 and the other will equal 6? (Joint Probability!)

Cost Risk Analysis

- To complete JCL on cost & schedule, uncertainty/risk analysis needs to be completed
 - Detailed How To? See the AFCAA Cost Risk Uncertainty Handbook
- Methods available to include uncertainty as well as discrete risks
- Challenge: Need to understand behavior of costs
 - JCL...schedule...how is cost affected by schedule changes?
 - Fixed cost increase due to schedule growth, etc
- Challenge: Common WBS
 - JCL...schedule...how to load all costs against schedule?
 - Schedule WBS by Activity VS. Cost WBS by Product
- Flexibility in re-summarizing source detail estimate (ACE!)
- Ability to specify uncertainty at varying levels (ACE!)

Schedule Risk Analysis

- An integrated master schedule is ideal, but a high level representation can behave similarly...
- Logically linked network of schedule activities
- Uncertainty specified on the activity duration
- Ability to incorporate discrete events (probabilistic branching)
- Challenge: Schedule must be compatible with cost estimate
 - JCL...cost...is the schedule from the same plan as the cost
 - Need to ensure the finish date is the same for both plans
- Ability to specify correlation between schedule activities

Key Factors for JCL Cost & Schedule

- Cost & Schedule risk analysis complete
- Cost risk analysis should not include uncertainty due to schedule!
- IMS contains network of logically linked activities
- Behavior of cost established to allow the total cost to calculate as a function of the schedule duration
- Ability to cost-load the network of schedule activities
- Ability to schedule-load the cost estimate (!!)

The End Result

- A distribution of cost & schedule pairs
- For every finish date, a total cost value reflective of the total schedule duration
- Number of pairs depends on number of iterations completed

	в	С	D	E
54				
FF		Itti		IOC Louis de Data
50		terations	#17 07C	11 Sep 2019
50			\$11,010 ##E 110	11 Sep 2010
57		4	\$10.113	14 FeD 2016
58		3	\$21,661	07 Apr 2018
59		4	\$21,948	06 Dec 2016
60]	5	\$16,929	26 May 2017
61]	6	\$16,014	22 Mar 2018
62		7	\$15,156	06 Dec 2016
63		8	\$14,743	23 Aug 2016
64		9	\$13,974	15 Jul 2017
65		10	\$15,000	05 Feb 2017
66		11	\$17,756	14 Nov 2016
67		12	\$15,303	13 Jan 2015
68		13	\$18,612	10 Sep 2012

Definitions

- Joint Probability the probability of a single pair of random variables (X, Y) occurring given the total distribution of pairs.
 - Example: The joint probability of the pair value, finish date = 01 Jan 2013 and total cost = \$25B, is 1% in this distribution of 5k iterations. (meaning 50 of the iteration draws was the 01Jan2013, \$25B pair)
 - The sum of all joint probabilities is 100%
- Cumulative Probability the sum of the total probability up to a certain pair value (cost = x, schedule = y). This includes the sum of all probabilities for pair values <=x and y.</p>
 - Example: The cumulative probability of finishing before 01 Jan 2013, for a total cost less than \$25B, is 10%.
 - S-Curves and Scatter plot quadrant
 - Joint Confidence Level

Inside JPU

Demonstration - Input the simulation results

Select from drop-down allows for easier storage of many simulation results

Project Total	•		
Project Total			
IOC Total			
ISS Ops Total			
HLR Total			
Lunar Ops Total		Г	
JC-SPA			
M&I Excursion		ſ	▲
Total Development			Proj
Total Production		_	To
Total Software			\$
IOC Finish Date			
IOC Duration		k -	:
Finish Date			\$
Duration			\$
Dev Finish Date			
Prod Finish Date	•	ŀ	
		ŀ	*
the second se		-	

Project		ISS Ops		Lunar Ops
Total	IOC Total	Total	HLR Total	Total
\$17,876	\$12,348	\$4,314	\$832	\$383
\$15,113	\$10,214	\$3,938	\$616	\$345
\$21,661	\$13,263	\$6,449	\$1,338	\$611
\$21,948	\$14,982	\$5,364	\$1,116	\$486
\$16,929	\$11,598	\$4,238	\$704	\$389
\$16,014	\$10,535	\$4,371	\$706	\$401
\$15,156	\$10,346	\$3,732	\$756	\$321
\$14,743	\$9,455	\$3,976	\$964	\$348
\$13,974	\$9,495	\$3,451	\$714	\$314
\$15,000	\$10,008	\$3,917	\$716	\$358
\$17,756	\$12,270	\$4,348	\$764	\$374
11	N 8			1 No. 1

Inside JPU

.

Scatter Plot

- Quadrants form Horizontal and Vertical lines
- Frontier Line
 - Specify % to draw line -

Set Frontier 40% - 90% 65% Frontier

65%

_	Finish Date		Total Cost
<u>+</u>	10.0%	4-May-02	\$679,851
		4-May-02	\$292,872
	Total Cost		Finish Date
÷	10.0%	26-Apr-02	\$362,219
_		22-May-02	\$362,219

Quadrant	Count	Joint Probability
Under Both 'X' & 'Y'	124	2.5%
Under 'X', Over 'Y'	468	9.4%
Over 'X', Over 'Y'	4,030	80.6%
Over 'X', Under 'Y'	378	7.6%
	5,000	100.0%

X = 10% Y = 10%

Build Frontier

- User Controls
 - Move the Horizontal and Vertical lines

Inside JPU - Screenshot

Notional Data for illustrative purposes only

Inside JPU - Contour Plots

Joint Probability

Cum Probability

Copyright © Tecolote Research, Inc. January 2009

More than Cost & Schedule

ACE Example file demonstrations (06 – Advanced Risk.aceit)

Operational Life and Total O&M Cost

- How is total O&M cost a function of op life?
 - OpFieldedUnits = Fielding Schedule. Life is used to calculate how many units are operating in the field at any one time. Cost for O&S is largely based on the number of units operating in the field.

• RDTE Costs for Nav/Guid of Air Vehicle & Nav/Guid Weight (lbs)

- CER calculating Cost relies on Nav/Guid Weight
- How does distribution of weights impact total cost?
- Analyze the joint probability of the technical parameter to a total cost

OpLife and O&M Costs

Joint Probability Chart

In this example OpLife can be partial years, an improvement to the model would force OpLife to integer only (RndUp)

Nav Wgt (Lbs) & RDTE Costs

Joint Probability Chart

- JPU is projected to be delivered with ACEIT v7.2
- Intent is to make JPU Tool Independent; that is, the user can use simulation results from a variety of sources (ACE, CBall, @Risk, etc) to generate the reports
 - **Easily constructs JCL visualizations**
- Easily conduct JCL on many variables, not just cost & schedule