## RESEARCH, INC. Bridging Engineering and Economics Since 1973

## Accurately Mapping Third-party Tool Results into ACE

Daniel Garcia, Tecolote Research, Inc. Steve Sultzer, Galorath, Inc.<br>- Los Angeles - Washington, D.C. Boston - Chantilly ■ Huntsville - Dayton - Santa Barbara

- Albuquerque - Colorado Springs - Ft. Meade - Ft. Monmouth - Goddard Space Fight Center - Ogden - Patuxent River - Silver Spring - Washington Navy Yard



## The Presenters

- Daniel Garcia
- Sr. Analyst with Tecolote Research
> 8+ years in the Los Angeles Division
> Global Positioning System Wing, Deputy Task Manager
- ACEIT Instructor
- Steve Sultzer
- Sr. Consultant with Galorath, Inc.
>4+ years supporting the Los Angeles Division of Tecolote
> Primarily supports GPS Wing


## Third-party Tool Use with ACE

■ ACE supports third-party tools very well

- Parametric estimation tools (such as SEER tool suite)
- Risk/Statistical tools (such as @Risk and Crystal Ball)

■ The results from these tools can be brought into ACE manually (typing the results into ACE) or in some automated fashion (e.g. using the Excel-to-Ace plug-in)

■ This presentation will focus WHY and HOW to use the results from third-party tools in ACE

## SEER Parametric Models

- SEER suite of tools are parametric models that estimate the cost, effort, and schedule for the development and production of hardware and software
- Model of interest in this discussion is the SEER model for estimating software (SEER-SEM)
- There also exists SEER models for estimating hardware (SEER-H), and Integrated Circuits (SEER-IC)
- Estimates generated with the SEER models will frequently be used as inputs into the ACEIT model in building a complete system estimate
> $\square$ The process employed in this example uses SEER results, but can be used with results from any third-party tool


## There is an issue with using the standard distributions within ACE

- The standard result for SEER configuration items with risk adjusted inputs is the 50\% confidence level value (median)
- For non-Normal type distributions, ACE is expecting the Most Likely value (mode)
■ Example: A Triangular Distribution

- Illustration will use examples from SEER
- If you enter the output from SEER models (the 50\% confidence value or median) into ACE as the Most Likely value, you may introduce statistical error
- For SEER models (and many other parametric models), a Lognormal distribution will provide a very good approximation of the results in the $50 \%$ to $80 \%$ confidence level areas of the S-curve; However, outside of this range the results may be significantly different

> User-defined Cumulative Distribution Function (CDF) capability in ACEIT 7.1a, allows the results from third party tools to be mapped very accurately into ACE

## SEER Examples

- Example will use SEER and will demonstrate challenges with using current guidance
- Three estimates
- Estimate 1
> 'Regular' right-skewed example
- Estimate 2
> Lower risk example
- Estimate 3
> High risk, highly right-skewed example
tecolote
Research, Inc. Aridging Engineering ans Economics Since 1973


## 'Regular' right-skewed example

ENTIRE RANGE, EST 1


NOTIONAL DATA

## Lower risk example

ENTIRE RANGE, EST 2


NOTIONAL DATA

Tecolote
RESEARCH, INC. Aridging Ergineering and Economics Since 1973

## High risk, highly right-skewed



NOTIONAL DATA

## User-defined Cumulative Distribution Function (CDF)

■ New in ACEIT 7.1

- Allows the user to enter percentile/factor pairs to accurately describe a user-defined (or third-party model defined) risk distribution curve
- The percentile is the confidence level of the data point; the multiplier is the percentage of the $50 \%$ data point
■ Example: Distribution curve where,
\% CL Value Percentage to PE (50\%CL value)
- 10\% CL = $60 \quad 0.50,(60 / 120)$
- 30\% CL = 85 0.71, (85/120)
- 50\% CL = 120 1.00, (120/120)
- 70\% CL = 180 1.50, (180/120)
- 90\% CL = 285 2.38, (285/120)


## CDF Screen

- The CDF dialog allows the user to enter custom, specific Confidence Level \% and Multiplier pairs to be entered
- This information can be
- Input manually in ACE
> "Fat-fingered"
> Copy/Pasted
- Brought into ACE in an automated fashion using the Excel-to-ACE plug-in

Edit Custom CDF
Name: MCE25
Confidence and multiplier must be in ascending order.
The next multiplier can be equal to the previous one. Confidence is percentage number between 0 and 100 . Multiplier is a factor of the point estimate. For example, you may have 1.0 at $50 \%$ confidence and 1.25 at $75 \%$ confidence.

|  | Confidence (\%) | Multiplier | 人 |
| :---: | ---: | ---: | ---: |
| 1 | 1.00000000000 | 0.6800000000000 |  |
| 2 | 10.00000000000 | 0.6060000000000 |  |
| 3 | 20.00000000000 | 0.7554800000000 |  |
| 4 | 30.00000000000 | 0.8310280000000 |  |
| 5 | 40.00000000000 | 0.9141308000000 |  |
| 6 | 50.00000000000 | 1.0000000000000 |  |
| 7 | 60.00000000000 | 1.1000000000000 |  |
| 8 | 70.00000000000 | 1.2100000000000 |  |
| 9 | 80.00000000000 | 1.3310000000000 |  |
| 10 | 90.00000000000 | 1.4641000000000 |  |
| 11 | 99.00000000000 | 1.6105100000000 |  |
| 12 |  |  |  |Is discrete distribution (no interpolation)

## Getting the SEER Output

- The easiest method of getting the risk information for each CSCI is by using the Flexible Export feature in SEER
- In the output section of the Flexible Export dialog are the risk outputs (Risk Development Schedule, Effort, and Cost)
- This feature will allow the user to output information to Excel quickly and easily


## Flexible Export Screen



## Preparing the Data for ACEIT

- This information can be pasted into Excel



## Manual Entry

- Once the information is in Excel, the percentile/factor pairs need to be created.
- To input the information into ACE manually, formulas in Excel to divide each value with the $50 \%$ value can be used



# Type the Information into the CDF Window 



■ Sample files available in ACE Admin ("Excel Plug-in Example" files)

- You must leave the name of the ACE Input worksheet. You can delete rows that you are not using.



## Automatic Entry

- Can use CSV macro (in the example files) or build cell using the CONCATENATE function in Excel



## Accessing Plug-in

■ From Tools menu -> Excel-to-ACE Plug-in


■ Excel-to-ACE Plug-in Dialog Box


- Use refresh option if updating an existing CDF


## Plug-in Dialog

■ Select a file. Make sure to check all of the WBS elements and risk distribution


## ACEIT Session

■ Need to enter EXCEL_TBYC into Equation / Throughput

 $\prod_{\text {ORATH }}$ Results - Much better across the entire range

## Lower risk example




## High risk, highly right-skewed

ENTIRE RANGE, EST 3


Results - Much better across the entire range

## ■ Questions?

- Please feel free to contact us:
- Daniel Garcia dgarcia@tecolote.com
- Steve Sultzer sdsultzer@galorath.com

■ Thank you for your attention!

