

The Math and Reason Behind RI\$K Allocation 24 January 2007

Los Angeles
 Washington, D.C.
 Boston
 Chantilly
 Huntsville
 Dayton
 Santa Barbara
 Albuquerque
 Colorado Springs
 Columbus
 Ft. Meade
 Ft. Monmouth
 Montgomery
 Ogden
 Patuxent River
 Pensacola
 San Diego
 Charleston
 Cleveland
 Denver
 New Orleans
 Oklahoma City
 Silver Spring
 Warner Robins AFB
 Vandenberg AFB

Finally Makes Sense

Time Equals Money Knowledge is Power Power Equals Work / Time

Therefore,

Knowledge = Work / Time

In other words,

The less you know, the more \$ you make.

- Attributed to Scott Adams of Dilbert Fame

Overview

Topics Covered

- The Goal of Allocation
- ACE RI\$K Allocation Report
- Choosing an Allocation Heuristic
- The Math and an Example
- Potential Enhancements

Goal of Allocation

RI\$K = Context

- Point Estimate lacks meaning
- Risk Statistics...
- ...quantify model uncertainty
 - As a range of possible outcomes
- ...giving P.E. context
- However, stats don't add up
 - Sum of risk is not equal to risk of sum

It All Adds Up

Allocation Adjusts Children So That WBS Adds Up to Total

- For example*, ACE removes \$2,446 from children
- Notice how "risky" rows move more

• You Pick Which Rows in WBS Are Fixed at Target Confidence

• Define your "pivot" rows based on where you manage your money

WBS/CES	75.0% Level	\$ Change	Allocate@75%
Total <i>(pivot)</i>	\$166,463	\$0	\$166,463
Manufacturing	\$111,772	\$24	\$111,796
Air Vehicle	\$98,669	(\$1315)	\$97,354
Integration	\$13,666	(\$224)	\$13,442
SEPM	\$55,727	(\$700)	\$55,027
Other	\$647	(\$7)	\$640

* From "02 – Basic Risk.aceit" example file

Allocation Report in ACE

Integration/Test

I Test and Evaluat

Allocate In ACE

The RI\$K Allocation Report

 It's simply a switch in the Phased Report on the RI\$K tab

Set the confidence for the "pivot" rows

Set who the "pivot" rows are

- 1: Pick 1st, 2nd, 3rd level WBS
 - Easy nothing more to do
- 2: Manually define levels
 - Pick category column
 - Put text in cell of pivot rows

Report the Mean

- Third bullet on dialog
- No "pivot" to worry about
 - Mean sums up

Generating Reports

Now comes the hard part... Press the "View" button

Options Galore

You may use RI\$K Allocation with various phased reports

• Phased, Budgetary, Cost Category

You may use RI\$K Allocation with various report settings

- Detail by Category
- Summary by Category
- TY, SY, BY
- Selected Rows, Sections, etc.
- WBS/CES indenture limitations

POST works great with allocated results as well

• You can generate just about any report or chart using allocated results instead of the point estimate

Choosing an Hueristic

n Integration/Test

I Test and Evaluat

Prioritization

Primary Goal in ACE:

- We Always Want to Generate Valid, Meaningful Results
- Rows Land In Their Distribution Bounds
 - For any confidence level from 1% to 99%

Starting Safe

- All allocation heuristics add an amount to a starting point
- Where does ACE start?
- We want to avoid big swings
 - Long distances increase
 likelihood we land out of bounds
- We start at target confidence level
 - Usually very close to destination
 - Intuitive just a tweak to stats
 - Tendency to move toward mean
 - And away from extremes

Alloc\$ = Start\$ + Adjust\$

• A Trivial Example (watch the low):

WBS	Form	Mode	Low	High
Total				
А	Tri	400	200	600
В	Tri	100	90	200

Correlation Matrix						
	В					
А	0.5					

Allocations from ACE and another popular method:

WBS	Point Estimate	Cost @ 20%	Other Allocation	ACE Allocation
Total	500	443	443	443
Α	400	327	400	334
В	100	106	43	109

Shouldn't the result be within the original risk bounds?

Staying Safe

How Much Does Each Element Get?

• Prorate using a weighting factor

What Feels Good for w_i?

- 1) Always positive (safe for prorating),
- 2) Increases proportionally with cost,
- 3) Increases proportionally with uncertainty,

ACE Uses Standard Deviation (σ) to Weigh Elements

- Always positive
- Increases with Mean
- Increases with Coefficient of Variation (CV)

 $Tot\$ = C\$ + Risk\$ \frac{w_i}{\sum w_k}$

Example of "Fair"

The Results

- ACE increases confidences of all project elements regardless of costs
- Other heuristic loads up only large cost elements, neglecting smaller ones

WBS	Mean	Cost @ 80%	Other Allocation		AC Alloca	E ation	
Total	5550	6790	6790	80%	6790	80%	
Huge	5000	6264	6238	80%	6143	78%	\bigvee
А	4000	5012	4991	80%	4914	78%	
В	1000	1253	1247	80%	1229	78%	Notice how
Small	500	600	502	53%	590	78%	little it costs
С	400	501	401	53%	472	74%	to boost tiny
D	100	125	101	51%	118	74%	projects
Tiny	50	58	50	50%	57	78%	
E	40	50	40	50%	45	68%	
F	10	13	10	50%	12	68%	

The Math

ACE RI\$K Allocation

Most Allocation Schemes Prorate All At Once

• One step process is easier to implement in Excel

ACE RI\$K Allocation Prorates Recursively

• This helps capture cumulative impacts to parent from all children

Total	850
R&D	126
R	46
D	80
Prod	524
Non-Rec	128
Rec	456
O&S	145
0	90
S	148

Work-a-long

Simple Example Session

- We will allocate at the 75% confidence of Total (\$751)
- For ACE RI\$K Allocation, all you need are the standard deviation and the costs at the target confidence

WBS	P.E.	75.0% Level	Std Dev			Allocated @ 75%
Total	\$600	\$751	\$67			\$751
R&D	\$70	\$135	\$27			?
R	\$20	\$54	\$17			?
D	\$50	\$90	\$21			?
Prod	\$440	\$528	\$60			?
NR	\$90	\$140	\$29			?
Rec	\$350	\$403	\$51			?
O&S	\$90	\$113	\$16			?

Allocation (Step 1)

Step 1: For Each Pivot Row, *p*, Determine Adjustment

- Each child will "absorb" part of the adjustment, Δ
- Total is passed down the WBS (only total tracked in risk statistics)

 N_p = the number of children for row p $C\$_p$ = total cost at desired confidence level for row p $C\$_{pi}$ = total cost for the *ith* child of row p at desired confidence

Work-a-long (Step 1)

Calculate amount to adjust, Δ

$$\Delta\$_{p} = \$751 - (\$135 + \$528 + \$113) = \$(25)$$

$$\Delta\$_p = C\$_p - \sum_i^{N_p} C\$_{pi}$$

(This is how much we must adjust children)

WBS	P.E.	C\$ @75%	Std Dev	Δ\$ _ρ			Allocated @ 75%
Total	\$600	\$751	\$67	\$(2	25)		
R&D	\$70	\$135	\$27				
R	\$20	\$54	\$17				
D	\$50	\$90	\$21				
Prod	\$440	\$528	\$60				
NR	\$90	\$140	\$29		Ļ		
Rec	\$350	\$403	\$51				
O&S	\$90	\$113	\$16				

Allocation (Step 2)

Step 2: Prorate ∆_p among children of parent, p, to get new cost for child, P\$_i

• *P*\$; will get passed to children of row *i*, if row *i* has children

P^{*i*} = new total cost to use for subsequent prorating

 σ_i = standard deviation of row *i*

 σ_{pq} = standard deviations for children of row p

Work-a-long (Step 2)

Calculate new cost for each child

 $\Sigma \sigma =$ \$27 + \$60 + \$16 = \$103

P\$_{*R&D*} = \$135 - \$25 * \$27/\$103 = \$128

P - C + Λ	$\sigma_{_i}$
$\mathbf{I} \ \mathbf{\psi}_i = \mathbf{C} \ \mathbf{\psi}_i + \Delta \mathbf{\psi}_p$	$\sum_{p}^{N_p}$
	$\sum_{j} O_{j}$

WBS	P.E.	Stats @75%	Std Dev	Δ\$ _ρ	P\$ _i				Allocate @ 75%	ed
Total	\$600	\$751	\$67	\$(25)						
R&D	\$70	\$135	\$27		\$128					
R	\$20	\$54	\$17							
D	\$50	\$90	\$21							
Prod	\$440	\$528	\$60		\$514			We nee	ed its	
NR	\$90	\$140	\$29				С	hildren	to sum	
Rec	\$350	\$403	\$51					to this v	value	
O&S	\$90	\$113	\$16		\$109	/				

Step 3: For each parent row, *p*, determine adjustment

- Look familiar? Similar formula to Step 1
- Difference is that adjustment is based on new parent cost, P\$_p

• •

Step 4: Return to step 2

$$\Delta \$_p = P \$_p - \sum_i^{N_p} C \$_{pi}$$

Modified Cost of
p From Step 2

 N_p = the number of children for row p $P\$_p$ = adjusted cost for row p $C\$_{pi}$ = total cost for the *ith* child of row p at desired confidence

Work-a-long (Step 3)

$$\Delta\$_{R\&D} = \$128 - (\$54 + \$90) = \$(16)$$

$$\Delta\$_{Prod} = \$514 - (\$140 + \$403) = \$(29)$$

$$\Delta \$_p = P \$_p - \sum_{i}^{N_p} C \$_{pi}$$

WBS	P.E.	Stats @75%	Std Dev	∆\$ _p	P\$ _i	∆\$ _p	Allocated @ 75%
Total	\$600	\$751	\$67	\$(25)			
R&D	\$70	\$135	\$27		\$128	\$(16)	
R	\$20	\$54	\$17				
D	\$50	\$90	\$21				
Prod	\$440	\$528	\$60		\$514	\$(29)	
NR	\$90	\$140	\$29				
Rec	\$350	\$403	\$51				
O&S	\$90	\$113	\$16		\$109		

Work-a-long (Step 2)

Calculate new cost for leaf rows

 $\Sigma \sigma_{R\&D} = \$17 + \$21 = \$41$ $P\$_R = \$54 - \$16 * \$17/\$41 = \47

We now have our total for leaf rows

$$P\$_i = C\$_i + \Delta\$_p \frac{\sigma_i}{\sum_{j=1}^{N_p} \sigma_j}$$

WBS	P.E.	Stats @75%	Std Dev	Δ\$ _ρ	P\$ _i	Δ\$ _ρ	P\$ _i	Allocated @ 75%
Total	\$600	\$751	\$67	\$(25)				
R&D	\$70	\$135	\$27		\$128	\$(16)		
R	\$20	\$54	\$17				\$47	\$47
D	\$50	\$90	\$21				\$81	\$81
Prod	\$440	\$528	\$60		\$514	\$(29)		
NR	\$90	\$140	\$29				\$130	\$130
Rec	\$350	\$403	\$51				\$384	\$384
O&S	\$90	\$113	\$16		\$109 ¤			\$109

Allocation (Step 5)

Step 5: For Each Leaf Row, *i*, Adjust Fiscal Years

• This is a simple scaling based on adjusted total

$$P\$_{i,fy} = PE\$_{i,fy} \frac{P\$_i}{PE\$_{i,tot}}$$

 P_{i,fy}$ = allocated yearly cost for row *i* for year, *fy* PE_{i}$ = point estimate total for row PE_{i,fy}$ = point estimate's fiscal year value for row

Work-a-long (FY)

Calculate Fiscal Year Values

 P/PE$_{R} = $9*($54/$20) = 24

$$A\$_{i,fy} = PE\$_{i,fy} \frac{P\$_i}{PE\$_{i,tot}}$$

We can now sum FY values up the WBS

It is important that we spread the fiscal year values at the "leaf" rows so that their parents have the appropriate FY totals

WBS	PE\$	Р\$	2007	2008	2009	2010
R	\$20	\$54	\$4	\$9	\$5	\$2
P\$ _{R,fy}			\$11	\$24	\$13	\$6

Allocation (Step 6)

Step 6: Roll costs back up entire WBS

• Sum up the children's FY values for each parent, *p*, in WBS

 N_p = the number of children for row p $P\$_{p,fy}$ = yearly allocated cost for row p at year fy $P\$_{pj,fy}$ = yearly allocated cost for the *jith* child of row p

Work-a-long (Final)

Final Results for ACE Allocation:

WBS	P.E.	Stats @75%	Std Dev	Δ\$ _ρ	P\$ _i	Δ\$ _ρ	P\$ _i	Allocated @ 75%
Total	\$600	\$751	\$67	\$(25)				\$751
R&D	\$70	\$135	\$27		\$128	\$(16)		\$126
R	\$20	\$54	\$17				\$47	\$47
D	\$50	\$90	\$21				\$81	\$81
Prod	\$440	\$528	\$60		\$514	\$(29)		\$584
NR	\$90	\$140	\$29				\$130	\$130
Rec	\$350	\$403	\$51				\$384	\$384
O&S	\$90	\$113	\$16		\$109			\$109

Potential Enhancements

Integration/Test

Test and Evaluation

ACE Could Improve

ACE Could Provide a Means for Prioritizing Systems

- Important systems should receive more funding
- ACE Could Support Schedule Risk Better
 - All time-phased allocations based on point estimate phasing
- ACE Could Provide Risk Loading
 - Sometimes risk is in outlying years ACE spreads it evenly
- ACE Does Not Support Other Popular Allocation Methods
 - Mandates and standards require use of other allocation schemes
- ACE Does Not Calculate Confidence for Costs Above Pivot
 - That's the reason for the " \sim " e.g., "\$55.5 (\sim 25%)"
 - Esoteric subject impacted by contract vehicle and mgmt reserve

If You Remember Anything

Commandment

ALWAYS Allocate at Rows

Where You Manage Your Money

In Conclusion

ACE Allocation Is The Most Robust Allocation Available

- Other allocation methods can leave you with silly results
- Still up to you to verify results in terms of your model
- Math Not So Bad To Do Manually
- ACE Has Plenty of Room For Enhancement
 - Risk allocation, in general, has a long, long way to go
- My Unbiased(?!?) Recommendation...

Use ACE RI\$K Allocation

Even if You Don't Use ACE For Your Estimate

Comparison

Comparison of "Need¹" and ACE Allocations

¹ "Allocating Risk Dollars Back to WBS Elements" Stephen A. Book, Chief Technical Officer, MCR, LLC SSCAG/EACE/SCAF Meeting 19-21 September 2006

Budget Overrun

