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Generalized Degrees of Freedom (GDF) 
Dr. Shu-Ping Hu 

ABSTRACT 

Two popular regression methods for the multiplicative-error model are the Minimum-
Unbiased-Percent Error (MUPE) and Minimum-Percentage Error under the Zero-Percentage 
Bias (ZMPE) methods. The MUPE method, an Iteratively Reweighted Least Squares (IRLS) 
regression, does not use any constraints, while the ZMPE method requires a constraint as part of 
the curve-fitting process.  

However, ZMPE users do not adjust the degrees of freedom (DF) to account for constraints 
included in the regression process. As a result, fit statistics for the ZMPE equations, e.g., the 
standard percent error (SPE) and generalized R2 (GRSQ), can be incorrect and misleading. This 
results in incomparable fit statistics between ZMPE and MUPE.  This paper details why DF should 
be adjusted and recommends a Generalized Degrees of Freedom (GDF) measure to calculate fit 
statistics for constraint-driven cost estimating relationships (CER). It also explains why ZMPE’s 
standard error underestimates the spread of the CER error distribution. Illustrative examples are 
provided. 

OUTLINE 

This paper introduces a new concept to the cost community. We explain in detail why 
degrees of freedom (DF) should be adjusted for any constraint-driven regression equations and 
we use ZMPE as an example. The following topics will be discussed: 

• Purpose 

• Using constraints in CER development 

• Additive and Multiplicative-Error Models 

• ZMPE vs. MUPE: 

 Is ZMPE CER Unbiased? 

 Is ZMPE’s Standard Percent Error (SPE) Unbiased? 

• Definition of Generalized Degrees of Freedom (GDF) 

• Calculate Fit Statistics Using GDF 

• Example Section 

• Conclusions 

• Future Study Items for Constraint Driven Regression 

PURPOSE 
The main objectives of this paper are threefold.  First, we address a potential shortcoming 

when deriving constraint-driven equations, e.g., ZMPE CERs. Second, we suggest an appropriate 
adjustment (GDF measure) to calculate the CER fit statistics when constraints are included in the 
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regression process. Without a proper adjustment for DF, the fit measures for the ZMPE 
equations, e.g., the standard percent error (SPE) and generalized R2 (GRSQ), can be incorrect 
and misleading. This results in an unfair comparison with the statistical measures derived by the 
MUPE method.  

Lastly, we explain why using ZPME CERs without adjustment in cost uncertainty 
analysis may unduly tighten the S-curve. The unadjusted SPE for the ZMPE equation is smaller 
than the SPE for the MUPE equation. Since the SPE measures are used as the basis for cost 
uncertainty analysis, using unadjusted SPE measures for ZMPE equations may have a direct 
impact on the cost uncertainty results. A math proof is provided to support this conclusion.   

USING CONSTRAINTS IN CER DEVELOPMENT 

Solver (an Excel add-in program) is a popular tool used to generate nonlinear CERs, 
especially when constraints are specified. Many analysts have been using the following 
methodologies in Solver to develop CERs: 

• Minimizing the sum of squared residuals under the Zero-Percentage Bias constraint (i.e., 
the mean of the percentage errors is zero) 

• Minimizing the sum of squared percentage errors under the Zero-Percentage Bias 
constraint (i.e., the ZMPE CER) 

• Minimizing the sum of squared percentage errors or residuals in log space under the 
Zero-Bias constraint (i.e., the mean of the residuals is zero) using the Balance-
Adjustment Factor (BAF) (see Book, 2006)  

Considerations. These methodologies are very different from traditional methods, such 
as ordinary least squares (OLS) or log-linear models (OLS performed in log space). When 
various constraints are specified, we may not have the DF as given by the traditional definition 
when constraints are not part of the curve fitting process. In fact, the DF should be reduced if 
constraints are specified when deriving CERs. (See the explanation in the definition section.)  In 
addition, constraints should be made consistent with the underlying hypothesis. Mixing a 
multiplicative constraint with an additive error model or vice versa is neither logical nor 
necessary.  

Suggestions. Here are a few suggestions when using constraints in Solver: 

• Do not abuse Solver. Although Solver can easily handle constraints in the minimization 
process, we should not specify excessive constraints. 

• Explore different starting points to see if the solution stabilizes when using Solver. As we 
know, Solver is sensitive to the starting points and can be easily trapped in local minima, 
especially when fitting complicated equations or the sample size is small. We also know 
that the ZMPE CERs seem to be less stable than the MUPE ones (see Hu and Smith, 
2007). Be cautious when fitting ZMPE equations to small samples. As a precaution, 
explore different starting points to see if they lead to the same solution to ensure the 
resultant solution is stable. 

• Specify “meaningful” constraints. Make sure constraints included in the process are 
necessary, logical, and statistically sound as DF can be reduced by additional constraints. 
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If we lose one DF for each constraint, we want to ensure it is worthwhile. Since we 
generally deal with small samples, we should preserve as many DF as we can.  

• Calculate the DF and fit statistics properly if constraints are specified when deriving 
CERs, as well as any estimating relationships. 

ADDITIVE AND MULTIPLICATIVE ERROR MODELS 
We first introduce additive and multiplicative error models and then explain three different 

methodologies for fitting multiplicative error models. 

Additive Error Model. An additive error model is generally stated as follows: 

iii fY ε+= ),( βx  = fi + εi     for i = 1, …, n (1) 

where: 
 Yi = observed cost of the ith data point, i = 1 to n 
 f (xi,β) = fi = the value of the hypothesized equation at the ith data point 
 xi = vector of the cost driver variables at the ith data point 

β = vector of coefficients (unknown parameters) to be estimated by the regression 
equation 

εi = error term with a mean of 0 and variance σ2 (assumed to be independent of the 
cost drivers)   

 n = sample size 

The corresponding standard error of estimate for an additive CER is commonly termed the 
standard error of estimate (SEE) or CER’s standard error: 

∑
=

−−=
n

i
ii pnyySEE

1

2 )/()ˆ(  (2) 

where iŷ  is used to denote the predicted value of the ith data point and p is the total number of 
estimated parameters.  Based upon Equation 1, the error distribution of the dependent variable is 
assumed to be the same across the entire data range regardless of the size of the dependent variable 
(e.g., cost). This is not a realistic assumption in cost estimating, especially when the cost elements 
are approaching the upper or the lower end of the data range. 

Multiplicative Error Model. Multiplicative error terms are preferred in the cost analysis 
field because experience tells us that the error of an individual cost observation is generally 
proportional to the magnitude of the hypothetical equation rather than some fixed amount. In such 
cases, it is appropriate to hypothesize a multiplicative error term for a CER. A multiplicative error 
model is generally specified as 

iii fY ε*),( βx=  = fi * εi     for i = 1, …, n (3) 

(Most of the definitions of Yi, f (xi,β), etc. are the same as given in Equation 1). Unlike the additive 
error model, the standard deviation of the dependent variable in Equation 3 is proportional to the 
level of the hypothetical equation rather than some fixed amount across the entire data range. 
Before explaining the MUPE and ZMPE methods, we will start with the minimum-percentage-
error (MPE) method. 
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A. MPE Method.  The general specification for MPE, MUPE, and ZMPE models is the 
same as given above (Equation 3), except that the error term is assumed to have a mean of 1 and 
variance, σ2.  Based upon this assumption of a multiplicative model, a generalized error term is 
defined by 

),(
),(

βx
βx

i

ii
i f

fy
e

−
=  (4) 

where ei now has a mean of 0 and variance σ2 (since ei given above becomes “εi – 1”). 
The difference between this percentage error (Equation 4) and the traditional percentage 

error is in the denominator, where predicted value instead of actual value is used as the baseline.  
The objective of the MPE method is to find the values of the parameter vector β that minimize the 
sum of squares due to error (SSE); namely, the sum of squared eis (see Young 1991): 
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==

==






 − n

i
i

n

i i

ii eSSE
f

fy
1

2

1

2

),(
),(

βx
βx

 (5) 

However, the MPE solution is biased high because it is derived directly in a single pass, 
rather than by an iterative process like MUPE.  As the hypothetical function f (x,β) appears in both 
numerator and denominator, this process has a tendency to make f (x,β) higher than it should be. 
See Hu and Sjovold (1994) for details.  

B. MUPE Method. To eliminate this bias, the MUPE method solves for the hypothetical 
function, f (x,β), in the numerator separately from the function in the denominator through an 
iterative process, 

Minimize  ∑∑
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where k is the iteration number and the other terms are as defined previously. 

The weighting factor of each residual in the current iteration is equal to the reciprocal of the 
predicted value from the previous iteration.  Since the denominator in Equation 6 is kept fixed 
throughout each iteration, the MUPE technique turns out to be a weighted least squares (WLS) 
process with an additive error.  The final solution is derived when the change in the estimated 
parameters (β vector) between the current iteration and the previous iteration is within the analyst-
specified tolerance limit. This optimization technique (Equation 6) is commonly referred to as 
Iteratively Reweighted Least Squares (IRLS; see Seber and Wild, 1989; Weisberg 1985; 
Wedderburn 1974). The corresponding standard error of estimate for the MUPE CER is commonly 
termed multiplicative error or standard percent error (SPE): 

∑
=

−−=
n

i
iii pnyyySPE

1

2 )/()ˆ/)ˆ((  (7) 

Again, iŷ  is the predicted value in unit space for the ith data point and p is the total number of 
estimated parameters. Note the SPE measure is the square root of SSE adjusted for its degrees of 
freedom. The MUPE CER provides consistent estimates of the parameters and has zero 
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proportional error for all points in the data set.  See Hu (2001) or Hu and Sjovold (1994) for 
detailed descriptions of the MUPE method.  

C. ZMPE Method.  This is another common method used to reduce the positive 
proportional error when minimizing Equation 5 directly. Mathematically, it is stated as follows: 

Minimize  ∑
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This method is a “constrained” minimization process. It is commonly referred to as the 
zero percentage bias method under MPE, i.e., the ZPB/MPE or ZMPE method (see Book and 
Lao, 1999). The objectives of the MPE and ZMPE methods are the same except that a constraint 
is applied to the ZMPE method. Both MUPE and ZMPE CERs have zero percentage error for all 
the points in the data set, i.e., zero sample bias. Unlike ZMPE, however, MUPE does not include 
any constraints as part of the regression process (see Equation 6). 

ZMPE VS. MUPE 

 Is ZMPE CER unbiased? As discussed above, both MUPE and ZMPE CERs have zero 
sample bias; namely, the average percentage error is zero for the data set used to generate the 
CER:  

0
ˆ

ˆ1
1

=
−∑

=

n

i i

ii

y
yy

n
 (9) 

Note that Equation 9 is commonly termed zero percentage bias (ZPB) or zero sample bias. For 
MUPE CERs, the ZPB condition is achieved through the iterative minimization process. For 
ZMPE CERs, however, this condition is obtained by using a constraint (see Equation 8).  

Here is a common question: does the ZPB property imply that the fitted CER is 
unbiased? The answer is no—this is not necessarily true because the ZPB constraint can be 
applied to any minimization process. There is no guarantee that the CER result will be unbiased; 
namely, the condition “E(Ŷ) = f(X,β)” may not be satisfied. 
On the other hand, MUPE is the best linear unbiased estimator (BLUE) for linear models. For 
linear CERs, e.g., Y = (a + bX1 + cX2)*ε, the MUPE method produces unbiased estimates of the 
parameters and the function mean; it also provides smaller variances for the parameters and for 
linear functions of the parameters. (See Draper and Smith, 1981)  

 Furthermore, the MUPE CER provides consistent estimates of the parameters and the 
mean of the equation; MUPE’s parameter estimators are also the quasi maximum likelihood 
estimators (QMLE) of the parameters. However, there is no objective interpretation of the 
ZMPE CER—we do not know whether the estimated costs derived from the ZMPE CERs are the 
mean, median, or mode of the distribution. 

 Is a smaller SPE better? Should we select a CER solely based upon its SPE value? 
The answer is no for both questions. SPE is the CER’s standard error of estimate, which is used 
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to measure the model’s overall error of estimation; it is the one-sigma (percent) spread of the 
MUPE or ZMPE CER errors. In mathematical terms, we use SPE2 to estimate σ2, which is the 
variance of the error term, ε. Based upon many empirical examples, the SPE measure generated 
by the ZMPE method is always smaller than or equal to the SPE derived by the MUPE method 
(see Book, 2006):  

SPE(ZMPE) ≤ SPE(MUPE) (10) 

Therefore, the estimated variance of the error term derived by the ZMPE method is also smaller 
than or equal to that derived by the MUPE method. 

SPE2
(ZMPE) ≤ SPE2

(MUPE) (11) 

In Equations 10 and 11, the equal sign holds only for simple factor equations. Since ZMPE and 
MUPE methods generate the same simple factor equations, their SPE measures are also the 
same. See Hu (June 2010) for details.  

 Given Equation 10, should we select a ZMPE CER because its SPE measure is smaller 
than its MUPE counter-part? The answer is no—we should consider all the relevant fit and 
predictive measures when deriving CERs (Hu, 2008). Although a smaller SPE usually indicates a 
tighter fit, we should not rely solely on this measure when selecting CERs. If so, we would use 
the MPE method for CER development, which is proven to be wrong (see Hu 2001 and Hu and 
Sjovold, 1994). 

 Is ZMPE’s SPE2 an unbiased estimator of σ2? The answer is no; in fact, ZMPE’s SPE 
measure underestimate the spread of the CER error distribution. We will use a linear model as an 
illustrative example and will apply an expectation formula to a WLS to prove this conclusion.  

The purpose of using a WLS is when some of the observations in the data set are less 
reliable than others (i.e., the data points are not of the same quality). This means the variances of 
the data points are not all equal. When this occurs, a weighting variable is added to reflect the 
relative quality of each data point.  Statistically, the weighting factors should be chosen inversely 
proportional to the magnitude of the relative variances of the observations. The larger the 
variance of the data point, the less reliable the data point becomes.  For a general linear model, 
we can hypothesize the WLS as follows:   

Y = Xβ + ε (12) 

where: 
Y = the vector of the dependent variable 
X = the design matrix 
β = the vector of the unknown parameters, i.e., β = (β1, β2,…, βp) 
p = the total number of estimated parameters 
ε = the error term with mean of 0 and variance Vσ2 
V = the variance/covariance matrix without the constant factor σ2 

Note that Equation 12 also applies to a linear MUPE equation because the MUPE technique is 
also a WLS process.  

It can be shown that there exists a nonsingular symmetric matrix P such that P’P = P2 = 
V. If we multiply both sides of Equation 12 by the inverse matrix of P (denoted by P-1), a 
modified model for the new variable Z is given by 
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Z = (P-1X)β + P-1ε = (Q)β + P-1ε (13) 

where Z = P-1Y (a n-by-1 vector) and Q = P-1X (a n-by-p matrix). The new error term, P-1ε, for 
the variable Z is now distributed with the same variance for all observations, i.e., V(Z) = V(P-1ε) 
=  Iσ2, where I is an identity matrix. (Note: variance of Z = Var(P-1ε) = P-1E(εε’)P-1 = P-1PPP-

1σ2  = Iσ2.) Hence, we can apply OLS to derive a solution for Equation 13. We can also claim 
that the expected value of SSE for Equation 13 is σ2 times n minus p:  

E(SSE(Z)) )()ˆ()'ˆ())ˆ(( 2

1

2 pnEzzE
n

i
ii −=−−=−= ∑

=

σZZZZ  (14) 

where n is the sample size and p is the number of estimated parameters as given above. The 
proof of Equation 14 is based upon Equation 15 given below: 

If the random vector y has an expected value µ (E(y) = µ) and a variance-covariance 
matrix Σ, the quadratic form y’Ay has the following expected value: 

E(y’Ay) = µ’Aµ + trace(ΣA) (15) 

where A is a square matrix and trace is the sum of the diagonal elements of a square matrix.  
Note: Equation 15 holds whether or not the random vector y is multi-normally distributed. The 
SSE of the new dependent variable Z under OLS is given by the quadratic form: 

ZHIZHZZHZZ
ZQQQQ(ZZQQQQZ
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where H = Q(Q’Q)-1Q’ (the hat matrix) and β̂  is the LS solution for the unknown parameters.  
Based upon Equation 15, we can then derive the expected value of SSE for the dependent 
variable Z: 
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 (17) 

Note that Equation 14 does not require the random vector Z to be multi-normally distributed 
(Morrison, 1983). We may also use Equation 14 as an approximation for a nonlinear model 
where the design matrix is approximated by the partial derivatives of the hypothetical CER with 
respect to each parameter evaluated at the parameter estimates. For a nonlinear model, however, 
the validity of Equation 14 depends upon whether the linearized form is a good approximation of 
the true model. (If the normality assumption holds (i.e., ε ~ N(0, Vσ2)), then SSE/σ2 follows a 
chi-square distribution with (n – p) degrees of freedom. See Draper and Smith, 1981). 

Equation 16 can also be expressed using a quadratic form of Y: 
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where R = X(X’V-1X)-1X’ is the hat matrix and V-1 (= P-1P-1) is viewed as the weighting matrix 
for WLS. Just as Equation 17, we can also verify that the mean of SEE using Equation 18 is also 
(n-p)*σ2. This SSE can be further simplified when all the observations are uncorrelated: 

2)ˆ(ˆˆ ∑ −=−−= −
iii yywSSE )βX(YV)'βX(Y 1  (19) 

Note that for MUPE CERs, the diagonal element of V-1 is the reciprocal of the squared predicted 
value and the rest elements of V-1 are all zeroes.  

Based upon Equation 17, we can drive the following formula for linear MUPE CERs: 

E(SSE/(n – p)) = E(MSE) = E(SPE2) = σ2 (20) 

where MSE stands for mean squared error, which is the sum of squares due to error, adjusted by 
its DF. Given Equations 11 and 20, we conclude that ZMPE’s SPE measure is not an unbiased 
estimator of the error term; in fact, it underestimates the standard deviation (σ) of the error 
distribution.  

E(SPE2
(ZMPE)) ≤ E(SPE2

(MUPE)) = σ2 (21) 

Just as Equation 11, the equal sign in Equation 21 holds only for simple factor CERs. Therefore, 
here is an important message for analysts using ZMPE’s SPE for uncertainty analysis: 

Using ZMPE CERs in cost uncertainty analysis may unduly tighten the S-curve 
because their SPEs underestimate the CER error distribution. 

We use prediction intervals (PI) to model CER errors for cost uncertainty analysis. Since a PI is a 
function of the standard error of the regression (e.g., SPE), along with other factors, the smaller 
the standard error, the tighter the PI becomes. Consequently, the impact on the risk session can 
be substantial when using underestimated ZMPE’s SPEs in numerous WBS elements.  

Analysts may ask why ZMPE's SPE is biased low. We believe this is because its degrees 
of freedom did not get adjusted properly. In the section below, we will introduce the concept of 
GDF to explain why ZMPE CERs underestimate CER errors. 

DEFINITION OF GDF 

Degrees of Freedom (DF).  Statisticians use the term degrees of freedom to characterize 
the number of independent pieces of information contained in a statistic. (Note that the term 
“independent” means they are free to vary.)  Any sum of squares, therefore, has a DF associated 
with it. This number indicates how many pieces of independent information from the n 
independent observations, Y1, Y2, …,, Yn, are needed to compile the sum of squares.  For 
example, the total sum of squares (SST) needs (n – 1) independent pieces because there is one 
constraint such that the sum of (Y1 – Y ), (Y2 – Y ), …, and (Yn – Y ) is zero by definition. 
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For a simple regression model where Y = α + βX + ε, we can compute the regression 
sum of squares (SSR) from one function of Y1, Y2, …, Yn; namely, 2β̂  as SSR = 2β̂ Σi

2)( xxi − .  
Therefore, SSR has one DF, which is the number of the independent variables.  As for the sum of 
squares due to error (SSE), it has (n – 2) DF to measure the variability of the fitted line since 
both the intercept and slope are estimated by the regression equation. (Note: SSE = Σi (yi – ŷi)2  
for equations with an additive error term.) 

For a regression with multiple independent variables, the DF for SSE is defined to be the 
number of observations in the equation (sample size) minus the number of parameters estimated 
from the data.  Intuitively, the DF for SSE is the excess points that can be used to judge the 
quality of the fit.  The DF for SSR is the number of independent variables in the model. Table 1 
below lists the DFs for the various sums of squares. 

Table 1: Degrees of Freedom for Sum of Squares 
Source DF (w/ Intercept) DF (No Intercept) 
SSR k k 
SSE n – k – 1 n – k 
SST n – 1 n 

where k stands for the number independent variables and n is the sample size.  

Generalized Degrees of Freedom (GDF). When constraints are introduced into 
regression analysis, the number of independent pieces of information contained in SSE 
decreases. In other words, when additional constraints are present, we cannot search as freely as 
we can in an unconstrained domain to find a solution. Consequently, this results in a loss of DF. 
Generally, analysts count DF as the DF for the unconstrained process minus the number of 
constraints included in the process. 

To solve the unknowns in regression analysis, each “normal” equation introduced into the 
system can be viewed as a constraint that restricts one DF. For example, in a simple OLS 
regression model where Y = α + βX + ε, the objective function is given by 

∑
=

−−=
n

i
ii xyF

1

2)*( βα  (22) 

The least square solutions for the intercept and slope parameters are derived by taking the partial 
derivatives of F with respect to α and β, respectively, and then setting them to zero: 

0=
∂
∂
α
F     ∑

=

=−−
n

i
ii xy

1
0)*( βα  (23) 

0=
∂
∂
β
F     ∑

=

=−−
n

i
iii xyx

1
0)*( βα  (24) 

Since every normal equation (e.g., Equations 23 and 24) can be viewed as a constraint 
(which results in a loss of a DF), the DF for SSE in this simple example is n – 2 (as we explained 
in the DF section). If we specify an additional constraint in the minimization process such that 
the sum of all proportional errors is zero: 
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 ∑
=

=+−−
n

i
iii xxy

1
0)*/()*( βαβα  (25) 

Then the total number of constraints is increased to three from two. Consequently, the resultant 
DF becomes n – 2 – 1 as we are restricted by this additional constraint when searching for the 
minimum. 

By definition, each constraint introduced into the system will restrict one DF. Therefore, just like 
each unknown in the regression equation, each constraint specified in the curve-fitting process 
should be counted as a loss of one DF when calculating the SE or SPE measure.  

Furthermore, we should take redundancy into account. For example, if two additional 
constraints are specified in a regression model but one constraint can be derived from the other, 
then we should only count a loss of one DF rather than two. Another example, if a constraint is 
directly related to the normal equations, then it does not count towards a loss of a DF. Based 
upon this concept, GDF is defined as follows: 

GDF = n – p – (Number of Constraints) + (Number of Redundancies) (26) 

where n is the sample size and p is the total number of estimated parameters. Note that the 
constraints in Equation 26 are referring to the equality constraints; the GDF for the inequality 
constraints is another topic. Based upon Equation 26, GDF can be summarized as: 





−−
−

=
)(1 CERsfactorsimpleforexceptZMPEforpn

MUPEforpn
GDF  (27) 

CALCULATE FIT STATISTICS USING GDF 
Why is GDF important and why do we care about reporting the correct DF? The 

answer is straightforward— the DF measure is essential because all the fit statistics are based 
upon this number. Therefore, we should calculate the fit statistics (SEE, SPE, Adjusted R2, and 
Generalized R2) using the proper DF, namely, GDF when constraints are specified as part of the 
regression process. When GDF is applied, the fit measures derived by the ZMPE method should 
be comparable to those derived by the MUPE method. 

Modifying SEE and SPE Using GDF.  Both the SEE and SPE measures should be 
calculated using GDF when constraints are specified in the process: 

∑
=

−=
n

i
ii GDFyySEE

1
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∑
=
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1
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This SPE measure (Equation 29) is identical to Equation 7 for MUPE CERs. However, it is 
different for ZMPE and should be modified as follows: 
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−

=
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pnSPESPE cZMPE  (30) 
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where SPE(c) stands for the current calculation, not applying GDF. The updated SPE measure for 
ZMPE is larger than the current value. Once GDF is applied, we can compare MUPE’s SPE with 
ZMPE’s SPE using Equation 29. Note that the SPE measure is regarded as the CER’s standard 
error of estimate; it is the one-sigma spread of the MUPE/ZMPE CER. 

Modifying Adjusted R2 using GDF for Additive-Error CERs.  Adjusted R2 calculated 
in unit space is used to evaluate the predictive capability of the regression equation for additive-
error models. Both R2 and Adjusted R2 can be evaluated in either fit space or unit space. “Fit 
space” refers to the domain where the regression is derived by the optimization technique, while 
“unit space” denotes the domain of the dependent variable. We recommend updating Adjusted R2 
in unit space by GDF when constraints are specified in the curve fitting process:  
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where MSEf is the CER’s mean squared error (MSE) and SEEf is the CER’s standard error. We 
can use Adjusted R2 in unit space to compare the CER’s performance to the starting point, the 
MSE of an average cost CER (i.e., YMSE ) when the driver variables are not present. Note that 
GDF equals n – p when no constraints are specified in the curve-fitting process. 

Modifying the Adjusted R2 using GDF for MUPE and ZMPE CERs. Equation 32 is a 
modified Adjusted R2 for MUPE and ZMPE CERs. To be consistent with the error definition and 
the fitting methodology (see Equations 4 and 6), we recommend using this measure to evaluate 
the predictive capability of MUPE/ZMPE CERs: 
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This modified Adjusted R2 compares the estimated variances of MUPE or ZMPE with its 
baseline (i.e., an average CER when driver variables are not available). For example, if the SPE 
for a MUPE CER is 0.35, we don’t really know whether this number is good or bad (or how 
good it is). However, if Adjusted R2 for MUPE is calculated to be 0.75 (given the sample 
variance of an average CER is 1.4), then we know the reduction of variance is 75% when 
applying this CER.  In short, Adjusted R2 for MUPE/ZMPE is a relative measure, which puts 
MUPE and ZMPE’s SPE2 (MSE) in perspective. See Hu (2010) for details.  

We first introduced Adjusted R2 for MUPE/ZMPE in 2008 at the SCEA/ISPA Joint 
Annual Conference. We now suggest using GDF in the computation as an additional adjustment 
for ZMPE. Since Equation 32 takes constraints into account, we can use it to compare the 
Adjusted R2 measure between MUPE and ZMPE CERs. We can also use Equation 32 to compare 
across different MUPE or ZMPE CERs, but not to compare across different methods, e.g., a 
MUPE CER versus an additive error CER. As noted above, GDF equals n – p when no 
constraints are specified in the curve-fitting process. 

Modifying the Pearson’s Correlation Coefficient (r) for Small Samples. Pearson's 
correlation coefficient (Pearson’s r) measures the linear association between two sets of numbers 
{xi} and {yi} and is defined as follows: 
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where x  and y  are the means of {xi} and {yi}, respectively, and n is the sample size. Pearson’s 
r measures the degree to which two sets of data move together in a linear manner. It ranges 
between -1.0 to +1.0, where -1 indicates a perfect inverse relationship, 0 indicates no correlation, 
and +1 indicates a perfect positive relationship.  

We should consider the sample size when applying correlations to our cost uncertainty 
models.  For example, a correlation of 0.8 derived from 30 data points is much more significant 
than the same correlation computed from just five data points. Unfortunately, the sample size 
adjustment is not accounted for in the definition of Pearson’s correlation coefficient. The following 
formula relates the adjusted R2 to R2: 

Adjusted R2 = R2 – (1 – R2)*(p – 1)/(n – p) = 1 – (1 – R2)*(n – 1)/(n – p) (34) 

where p is the total number of estimated coefficients and n is the sample size.  

As inspired by Equation 34, we now establish a heuristic Pearson’s r squared (denoted by 2r ) to 
correct for small samples, assuming p = 2 for a one-independent model: 

)2/()1(*)1(1)2/()1( 2222 −−−−=−−−= nnrnrrr  (35) 

Pearson’s adjusted correlation coefficient (Pearson’s adjusted r) is then given by 
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where r is used to denote Pearson’s correlation coefficient. 

Instead of using Equation 33, we suggest using Pearson’s adjusted r (Equation 36) for 
correlation analysis, such as analyzing cost versus cost or residual versus residual correlation 
between two separate CERs. Here, the value of p is assumed to be two as we do not use 
Equation 36 to analyze correlation between the actual observation (y) and its CER’s predicted 
value (ŷ); namely, Equation 36 is not used within a CER. When evaluating a CER, use GRSQ 
(see below) to measure the linear association between a CER’s actual value and its predicted 
value. We can also take the square root of GRSQ (like Equation 36) to calculate Pearson’s 
adjusted r when evaluating CERs. 

Definition of GRSQ (r2).  Generalized R-squared (GRSQ, also denoted by the symbol 
r2) is commonly used for evaluating the quality of a nonlinear CER. By definition, GRSQ is the 
square of Pearson’s correlation coefficient between the actual observations, yis and CER 
predicted values, iŷ s (see Young 1992): 
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where y  and ŷ  are the averages of the actual (y) and CER-predicted values ( ŷ ), respectively.  

Modifying GRSQ (r2) Using GDF for Correcting Degrees of Freedom.  As shown by 
the definition above, GRSQ does not take the DF or even the sample size into consideration.  For 
example, a GRSQ of 0.8 derived from 30 observations should be more significant than the same 
GRSQ simply based upon five data points. This shortcoming is the same as we noted above for 
the Pearson’s correlation coefficient. We introduced a modified GRSQ to correct for DF in 2008; 
we now suggest making further adjustment for ZMPE by including GDF in the computation: 
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where r2 = r2(y,ŷ) = GRSQ; n and p are defined above. Again, GDF = n – p if no constraints are 
specified in the curve-fitting process. 

When dealing with a simple factor equation, e.g., p = 1, the term “(p – 1)/GDF” in Equation 38 
vanishes. However, the sample size should still be accounted for when it happens, so a modified 
term “1/(n – 1)” is used in this case. See Hu (2010) for details.  

Note that Equation 38 only adjusts DF; GRSQ (as well as Adjusted Pearson’s r) is still 
insensitive to different fitting methods and equation forms because it only measures the linear 
association between two sets of numbers, not the actual deviations between them (see Hu, 2010 
for details). 

EXAMPLE SECTION 
In this section, we use examples to demonstrate that the SPE measures for the ZMPE 

equations are no longer smaller than their MUPE counter-part when GDF is used in the 
computation of SPE.  

Weight-Based CER. Listed below is a hypothetical data set where the weight variable is 
used to predict the cost of a black box: 

Table 2: Cost vs. Weight Database 
Data Point Cost $K  Weight (lbs) 
Obs 1 135.0 4.18 
Obs 2 6.5 0.32 
Obs 3 8.0 0.57 
Obs 4 64.6 2.34 
Obs 5 32.9 0.50 
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Data Point Cost $K  Weight (lbs) 
Obs 6 95.4 2.70 
Obs 7 67.0 4.54 
Obs 8 112.2 4.42 
Obs 9 29.2 0.55 
Obs 10 22.7 0.20 
Obs 11 16.9 0.80 
Obs 12 35.0 1.75 

 

Four different CERs are generated using both the MUPE and ZMPE methods. See Tables 3 
and 4 for the fitted equations and their corresponding fit and predictive measures: 

Table 3: ZMPE CERs and Statistics 
ZMPE CERs SPE SPE(GDF) R2 R2

(GDF) GRSQ GRSQ(GDF) 

Linear 12.794 + 19.16*Weight 45.7% 48.2% 68.9% 65.4% 77.5% 75.0% 
LogLinear 36.889*Weight^(0.5882) 48.9% 51.5% 66.9% 60.4% 77.4% 74.9% 
Semi-Log 17.881*(1.5314)^Weight 47.1% 49.7% 64.4% 63.2% 68.9% 65.4% 

Triad 16.785+12.034*Weight^(1.349) 47.5% 50.4% 66.4% 62.2% 75.5% 69.4% 
Note:  R2 is used to denote the adjusted R2 for MUPE and ZMPE CERs. 

Table 4: MUPE CERs and Statistics 
MUPE CERs SPE R2 GRSQ 
Linear 10.528 + 21.2975*Weight 46.5% 67.8% 77.5% 
LogLinear 36.2953*Weight^(0.6635) 50.2% 65.5% 77.7% 
Semi-Log 16.756*(1.5835)^Weight 47.4% 66.5% 67.0% 
Triad 15.026+12.9863*Weight^(1.386) 48.4% 65.1% 75.3% 

 

As shown by Tables 3 and 4, the unadjusted SPE measures for these ZMPE CERs are all 
smaller than their respective SPE measures generated by the MUPE method. However, ZMPE’s 
updated SPE measures using GDF become larger than their MUPE counter-part (see the numbers 
in red). Furthermore, ZMPE’s updated adjusted R2 and GRSQ measures are all smaller than 
those generated by the MUPE method when GDF is applied in the computation (see the numbers 
in purple and green). Consequently, MUPE outperforms ZMPE based upon all three statistics.  

Note that the semi-log equation has the worst GRSQ among the four CERs. Although the semi-
log equation is tighter than the log-linear and triad equations, its GRSQ is much worse than those 
of the log-linear and triad CERs (see Tables 3 and 4). This example demonstrates that we cannot 
use GRSQ alone to select a best CER because GRSQ only measures the linear association 
between the actual observations and the predicted values, not the difference between them (Hu, 
2010). Here is a cautionary note for semi-log CERs: despite the fit measures, use the semi-log 
equation with caution as it goes up exponentially beyond the data range. 
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Graph 1 is a pictorial representation of the four MUPE CERs listed in Table 4. Based 
upon Table 4 and Graph 1, the linear CER is the best choice for predicting the cost of this black 
box. Both the intercept and slope coefficient of the linear CER are also significant. For details, 
see CO$TAT’s regression reports of the fit measures in Table 5.  

Graph 1: MUPE CERs 

 
 
Table 5: CO$TAT Fit Measure Reports for the Linear CER: Y = 10.528 + 21.2975*Weight 

Coefficients Statistics Summary 

Variable Coefficient 
Std Dev of 

Coef Beta Value 
T-Statistic 
(Coef/SD) P-Value 

Prob Not 
Zero 

Intercept 10.5281 4.7648  2.2096 0.0515 0.949 
X 21.2975 5.4030 0.7800 3.9418 0.0028 0.997 
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Goodness-of-Fit Statistics 

Std Error (SE) R-Squared 
R-Squared 

(Adj) 
Pearson's 
Corr Coef 

0.4649 60.84% 56.93% 0.7800 
 
Analysis of Variance 

Due To DF 
Sum of Sqr 

(SS) 
Mean SQ 
= SS/DF F-Stat P-Value 

Prob Not 
Zero 

Regression 1 3.3579 3.3579 15.5379 0.0028 0.9972 
Residual (Error) 10 2.1611 0.2161    
Total 11 5.5190     

  

CONCLUSIONS 
Make sure the constraints (if any) are meaningful, logical, and statistically sound 

when adding them to the curve fitting process. Although Solver can easily handle constraints 
when deriving CERs, we should not use the constraint feature excessively. Make sure every 
constraint is required and satisfies engineers’ reasoning. Also, explore different starting points 
when using Solver. Since Solver can be easily trapped in local minima, especially when fitting 
complicated equations or ZMPE equations, we suggest exploring different starting points to 
ensure the solution stabilizes. 

Adjust DF for constraint-driven equations (CERs and PERs). When constraints are 
specified in regression analysis, the number of independent pieces of information contained in 
SSE decreases. In other words, when additional constraints are present, we cannot search as 
freely as we can in an unconstrained domain to find a solution. We should adjust DF accordingly 
to capture the impact.  

GDF = n – p – (# of Constraints) + (# of Redundancies), where p denotes the total 
number of estimated parameters (coefficients) in the equation and n is the sample size. We 
should take both the constraints and redundancies into account when counting GDF. One 
restriction is equivalent to a loss of one DF. However, if two constraints are specified in a 
regression model but one constraint can be derived from the other, then we should only count a 
loss of one DF, rather than two. Additionally, if a parameter is known, e.g., the startup cost is 
known or the rate slope is given, then this amounts to a gain of one DF.  

Adjust DF for ZMPE CERs. DF should be subtracted by one for ZMPE CERs except 
for simple factor CERs. This is because the solution for this case is achieved using the constraint 
alone.  

Do not adjust DF and goodness-of-fit measures for MUPE CERs. Since no constraints 
are specified when deriving MUPE CERs, we do not need to adjust DF and goodness-of-fit 
measures for MUPE equations. 

Calculate the fit measures (SEE, SPE, Adjusted R2, and GRSQ) using GDF. All the fit 
statistics are driven by the DF measure. Therefore, calculate the fit statistics (e.g., SEE, SPE, 
Adjusted R2 and Generalized R2) using the proper measure of DF, namely, GDF when constraints 
are specified in the process. Using GDF, the ZMPE fit statistics should be comparable with those 
derived by the MUPE equation. 
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ZMPE’s standard error underestimates the spread of the CER error distribution. We 
applied an expectation formula (Morrison, 1983) to prove the above conclusion. Since the SPE 
measure is the basis for cost uncertainty analysis, we should use an unbiased estimator for the error 
distribution. Using ZMPE’s SPE without adjustment in cost uncertainty analysis may unduly 
tighten the S-curve.  

FUTURE STUDY ITEMS FOR CONSTRAINT DRIVEN REGRESSION 
Should we worry about specifying excessive constraints in a regression model? Adding 

excessive constraints into the curve-fitting process may cause the unknown parameters in the CER 
to be determined completely by the constraints. When this happens, there is no need to run 
regression analysis. How do we define the DF properly for this extreme case? In other words, if the 
number of constraints is equal to the number of estimated parameters, we do not use any curve-
fitting methods to derive a solution. Consequently, we may have no degrees of freedom left to judge 
the quality of the fit due to lack of regression. 

Below is a simple example using the constraint alone to generate a solution. Let us analyze a 
simple factor equation with a multiplicative error term: 

Yi = β*Xi*εi for i = 1, …, n (39) 

where n is the sample size and εi is the error term (with a mean of 1 and a variance σ2). 
It can be shown that both the MUPE and ZMPE solutions are the same: 
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Note that the ZMPE solution in this case is uniquely determined by the constraint instead of the 
minimization process (see Hu 2010): 
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Also, an inequality constraint may not be treated the same as an equality constraint. How 
to treat inequality constraints in the curve-fitting or distribution-finding process is another topic.
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